《Linux 进程控制完全指南》
《Linux 进程控制完全指南》
文章目录
- 《Linux 进程控制完全指南》
- 一、进程创建
- 1.1 fork函数初识
- 1.2 fork函数返回值
- 1.3 写时拷贝
- 1.4 fork常规用法
- 1.5 fork调用失败的原因
- 二、程序终止
- 2.1 进程退出场景
- 2.2 进程常见退出方法
- 2.2.1 退出码
- 2.2.2 _exit函数
- 2.2.3 exit函数
- 2.2.4 return退出
- 三、进程等待
- 3.1 进程等待必要性
- 3.2 进程等待的方法
- 3.2.1 wait方法
- 3.2.2 waitpid方法
- 3.2.3 获取子进程status
- 3.2.4 阻塞与非阻塞等待
- 进程的阻塞等待方式
- 进程的非阻塞等待方式
- 四、进程程序替换
- 4.1 替换原理
- 4.2 替换函数
- 4.2.1 函数解释
- 4.2.2 命名理解
- 五、自主Shell命令行解释器
一、进程创建
1.1 fork函数初识
在 linux 中 fork 函数是⾮常重要的函数,它从已存在进程中创建⼀个新进程。新进程为⼦进程,⽽原进程为⽗进程。
1.2 fork函数返回值
子进程返回0
父进程返回的是子进程的pid
1.3 写时拷贝
通常,父子代码共享,父子在不写入的时候,数据也是共享的,当任意一方试图写入,便以写时拷贝的方式各自一份副本
因为有写时拷贝计数的存在,所以父子进程得以彻底分离!完成进程独立性的技术保证
写时拷贝,是一种延时申请技术,可以提高整机内存的使用率
1.4 fork常规用法
1.5 fork调用失败的原因
二、程序终止
进程终止的本质是释放系统资源,就是释放进程申请的相关内核数据结构和对应的数据和代码
2.1 进程退出场景
2.2 进程常见退出方法
2.2.1 退出码
2.2.2 _exit函数
2.2.3 exit函数
2.2.4 return退出
return是一种更常见的退出进程方法。
执行return n等同于执行exit(n)
因为调用main的运行时函数会将main的返回值当作exit的参数
三、进程等待
3.1 进程等待必要性
3.2 进程等待的方法
3.2.1 wait方法
3.2.2 waitpid方法
3.2.3 获取子进程status
代码如下(示例):
#include <sys/wait.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
int main(void)
{pid_t pid;if ((pid = fork()) == -1)perror("fork"), exit(1);if (pid == 0) {sleep(20);exit(10);}else {int st;int ret = wait(&st);if (ret > 0 && (st & 0X7F) == 0) { // 正常退出printf("child exit code:%d\n", (st >> 8) & 0XFF);}else if (ret > 0) { // 异常退出printf("sig code : %d\n", st & 0X7F);}}
}
测试结果:
# ./a.out #等20秒退出
child exit code : 10
# ./a.out #在其他终端kill掉
sig code : 9
3.2.4 阻塞与非阻塞等待
进程的阻塞等待方式
代码如下(示例):
int main()
{pid_t pid;pid = fork();if (pid < 0) {printf("%s fork error\n", __FUNCTION__);}else if (pid == 0) { //childprintf("child is run, pid is : %d\n", getpid());sleep(5);exit(257);}else {int status = 0;pid_t ret = waitpid(-1, &status, 0);//阻塞式等待,等待5Sprintf("this is test for wait\n");if (WIFEXITED(status) && ret == pid) {printf("wait child 5s success, child return code is: % d.\n",WEXITSTATUS(status));}else {printf("wait child failed, return.\n");return 1;}}return 0;
}
进程的非阻塞等待方式
代码如下(示例):
include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <vector>
typedef void (*handler_t)(); // 函数指针类型
std::vector<handler_t> handlers; // 函数指针数组
void fun_one() {printf("这是⼀个临时任务1\n");
}
void fun_two() {printf("这是⼀个临时任务2\n");
}
void Load() {handlers.push_back(fun_one);handlers.push_back(fun_two);
}
void handler() {if (handlers.empty())Load();for (auto iter : handlers)iter();
}
int main() {pid_t pid;pid = fork();if (pid < 0) {printf("%s fork error\n", __FUNCTION__);return 1;}else if (pid == 0) { // childprintf("child is run, pid is : %d\n", getpid());sleep(5);exit(1);}else {int status = 0;pid_t ret = 0;do {ret = waitpid(-1, &status, WNOHANG); // ⾮阻塞式等待if (ret == 0) {printf("child is running\n");}handler();} while (ret == 0);if (WIFEXITED(status) && ret == pid) {printf("wait child 5s success, child return code is :%d.\n",WEXITSTATUS(status));}else {printf("wait child failed, return.\n");return 1;}}return 0;
}
四、进程程序替换
4.1 替换原理
4.2 替换函数
有六种以exec开头的函数,统称exec函数
4.2.1 函数解释
4.2.2 命名理解
代码如下(示例):
#include <unistd.h>
int main()
{char* const argv[] = { "ps", "-ef", NULL };char* const envp[] = { "PATH=/bin:/usr/bin", "TERM=console", NULL };execl("/bin/ps", "ps", "-ef", NULL);// 带p的,可以使⽤环境变量PATH,⽆需写全路径execlp("ps", "ps", "-ef", NULL);// 带e的,需要⾃⼰组装环境变量execle("ps", "ps", "-ef", NULL, envp);execv("/bin/ps", argv);// 带p的,可以使⽤环境变量PATH,⽆需写全路径execvp("ps", argv);// 带e的,需要⾃⼰组装环境变量execve("/bin/ps", argv, envp);exit(0);
}
五、自主Shell命令行解释器
代码如下(示例):
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <ctype.h>
using namespace std;
const int basesize = 1024;
const int argvnum = 64;
const int envnum = 64;
// 全局的命令⾏参数表
char* gargv[argvnum];
int gargc = 0;
// 全局的变量
int lastcode = 0;
// 我的系统的环境变量
char* genv[envnum];
// 全局的当前shell⼯作路径
char pwd[basesize];
char pwdenv[basesize];
// " "file.txt
#define TrimSpace(pos) do{\
while(isspace(*pos)){\
pos++;\
}\
}while(0)
string GetUserName()
{string name = getenv("USER");return name.empty() ? "None" : name;
}
string GetHostName()
{string hostname = getenv("HOSTNAME");return hostname.empty() ? "None" : hostname;
}
string GetPwd()
{if (nullptr == getcwd(pwd, sizeof(pwd))) return "None";snprintf(pwdenv, sizeof(pwdenv), "PWD=%s", pwd);putenv(pwdenv); // PWD=XXXreturn pwd;//string pwd = getenv("PWD");//return pwd.empty() ? "None" : pwd;
}
string LastDir()
{string curr = GetPwd();if (curr == "/" || curr == "None") return curr;// /home/whb/XXXsize_t pos = curr.rfind("/");if (pos == std::string::npos) return curr;return curr.substr(pos + 1);
}
string MakeCommandLine()
{// [whb@bite-alicloud myshell]$char command_line[basesize];snprintf(command_line, basesize, "[%s@%s %s]# ", \GetUserName().c_str(), GetHostName().c_str(), LastDir().c_str());return command_line;
}
void PrintCommandLine() // 1. 命令⾏提⽰符
{printf("%s", MakeCommandLine().c_str());fflush(stdout);
}
bool GetCommandLine(char command_buffer[], int size) // 2. 获取⽤⼾命令
{// 我们认为:我们要将⽤⼾输⼊的命令⾏,当做⼀个完整的字符串// "ls -a -l -n"char* result = fgets(command_buffer, size, stdin);if (!result){return false;}command_buffer[strlen(command_buffer) - 1] = 0;if (strlen(command_buffer) == 0) return false;return true;
}
void ParseCommandLine(char command_buffer[], int len) // 3. 分析命令
{(void)len;memset(gargv, 0, sizeof(gargv));gargc = 0;// "ls -a -l -n"const char* sep = " ";gargv[gargc++] = strtok(command_buffer, sep);// =是刻意写的while ((bool)(gargv[gargc++] = strtok(nullptr, sep)));gargc--;
}
void debug()
{printf("argc: %d\n", gargc);for (int i = 0; gargv[i]; i++){printf("argv[%d]: %s\n", i, gargv[i]);}
}
// 在shell中
// 有些命令,必须由⼦进程来执⾏
// 有些命令,不能由⼦进程执⾏,要由shell⾃⼰执⾏ --- 内建命令 built command
bool ExecuteCommand() // 4. 执⾏命令
{// 让⼦进程进⾏执⾏pid_t id = fork();if (id < 0) return false;if (id == 0){//⼦进程// 1. 执⾏命令execvpe(gargv[0], gargv, genv);// 2. 退出exit(1);}int status = 0;pid_t rid = waitpid(id, &status, 0);if (rid > 0){if (WIFEXITED(status)){lastcode = WEXITSTATUS(status);}else{lastcode = 100;}return true;}return false;
}
void AddEnv(const char* item)
{int index = 0;while (genv[index]){index++;}genv[index] = (char*)malloc(strlen(item) + 1);strncpy(genv[index], item, strlen(item) + 1);genv[++index] = nullptr;
}
// shell⾃⼰执⾏命令,本质是shell调⽤⾃⼰的函数
bool CheckAndExecBuiltCommand()
{if (strcmp(gargv[0], "cd") == 0){// 内建命令if (gargc == 2){chdir(gargv[1]);lastcode = 0;}else{lastcode = 1;}return true;}else if (strcmp(gargv[0], "export") == 0){// export也是内建命令if (gargc == 2){AddEnv(gargv[1]);lastcode = 0;}else{lastcode = 2;}return true;}else if (strcmp(gargv[0], "env") == 0){for (int i = 0; genv[i]; i++){printf("%s\n", genv[i]);}lastcode = 0;return true;}else if (strcmp(gargv[0], "echo") == 0){if (gargc == 2){// echo $?// echo $PATH// echo helloif (gargv[1][0] == '$'){if (gargv[1][1] == '?'){printf("%d\n", lastcode);lastcode = 0;}}else{printf("%s\n", gargv[1]);lastcode = 0;}}else{lastcode = 3;}return true;}return false;
}
// 作为⼀个shell,获取环境变量应该从系统的配置来
// 我们今天就直接从⽗shell中获取环境变量
void InitEnv()
{extern char** environ;int index = 0;while (environ[index]){genv[index] = (char*)malloc(strlen(environ[index]) + 1);strncpy(genv[index], environ[index], strlen(environ[index]) + 1);index++;}genv[index] = nullptr;
}
int main()
{InitEnv();char command_buffer[basesize];while (true){PrintCommandLine(); // 1. 命令⾏提⽰符// command_buffer -> outputif (!GetCommandLine(command_buffer, basesize)) // 2. 获取⽤⼾命令{continue;}//printf("%s\n", command_buffer);ParseCommandLine(command_buffer, strlen(command_buffer)); // 3. 分析命令if (CheckAndExecBuiltCommand()){continue;}ExecuteCommand(); // 4. 执⾏命令}return 0;
}