当前位置: 首页 > news >正文

【图文详解】MCP、A2A的核心技术特点以及架构模式

文章目录

    • 一、MCP:模型上下文协议
      • Part 1: MCP: Model Context Protocol
        • 1. 核心设计思想:解耦与标准化
        • 1. Core Design Philosophy: Decoupling & Standardization
        • 2. 核心技术组件与工作流程
        • 2. Core Technical Components & Workflow
        • 3. 核心优势
        • 3. Core Advantages
    • 二、A2A:智能体协作架构
      • Part 2: A2A: Agentic AI Architecture
        • 1. 核心设计思想:分工与协同
        • 1. Core Design Philosophy: Division of Labor & Collaboration
        • 2. 核心技术实现与模式
        • 2. Core Technical Implementation & Patterns
        • 3. 核心优势
        • 3. Core Advantages
    • 三、MCP 与 A2A 的协同
      • Part 3: The Synergy between MCP and A2A

若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力!有问题请私信或联系邮箱:funian.gm@gmail.com

请注意: 以下内容涉及较前沿的技术协议和架构模式,我们将从设计目标、工作原理到技术实现进行详细拆解。
Please note: The following content involves cutting-edge technical protocols and architectural patterns. We will break them down in detail from design goals and working principles to technical implementation.


一、MCP:模型上下文协议

Part 1: MCP: Model Context Protocol

MCPAnthropic 提出,其核心目标是标准化大模型与外部工具、数据源之间的通信方式。它解决了智能体开发中的一个核心痛点:每家厂商的工具集成方式都不同,开发者需要为每个工具重复编写适配代码。
MCP was proposed by Anthropic. Its core goal is to standardize the communication between large models and external tools & data sources. It solves a core pain point in agent development: every vendor has a different way of integrating tools, forcing developers to write adapter code for each one.

1. 核心设计思想:解耦与标准化
1. Core Design Philosophy: Decoupling & Standardization
  • 中文: MCP 采用客户端-服务器架构,将大模型(客户端)与工具/数据源(服务器)彻底解耦。
  • English: MCP adopts a Client-Server architecture, completely decoupling the LLM (client) from the Tools/Data Sources (server).
  • 中文: 工具提供方只需按照统一的MCP标准实现一个Server,任何支持MCP协议的Client(如Claude Console、各类IDE插件)就能立即发现并使用这些工具,无需额外开发。
  • English: Tool providers only need to implement a Server according to the unified MCP standard. Any Client that supports the MCP protocol (e.g., Claude Console, various IDE plugins) can immediately discover and use these tools without additional development.
2. 核心技术组件与工作流程
2. Core Technical Components & Workflow

MCP 通信通常使用 JSON-RPC 2.0 over SSE 或 WebSockets。其核心操作围绕以下几个核心概念:
MCP communication typically uses JSON-RPC 2.0 over SSE or WebSockets. Its core operations revolve around the following key concepts:

Client-Side Interaction
JSON-RPC 2.0
Implements & Manages
Provides
1. lists resources & tools
2. calls tool with params
e.g., search_jira_issues
3. returns structured data
4. uses data + prompts
to form answer
User asks question
in IDE
MCP Client
e.g., Claude IDE Plugin
MCP Server
e.g., Jira Tool Server
Provides answer to user
Resources
Jira Issues, Projects
Tools
search_jira_issues
create_jira_ticket
Prompts
e.g., Bug Fixing Guide
  • 资源: 服务器管理的静态或动态数据源,如数据库、文件系统、API端点列表。
    • Resources: Static or dynamic data sources managed by the server, such as databases, file systems, or API endpoint lists.
  • 工具: 服务器提供的可调用函数,如执行计算、调用API、写入文件等。
    • Tools: Callable functions provided by the server, such as performing calculations, calling APIs, or writing files.
  • 提示词: 服务器可以提供预定义的提示词模板,客户端可以直接使用或组合这些提示词来更好地引导模型。
    • Prompts: The server can provide predefined prompt templates. The client can use or combine these prompts to better guide the model.

工作流程详解:
Workflow Breakdown:

  1. 连接与初始化: Client 启动并与 Server 建立连接。Server 向 Client 注册其提供的所有 ResourcesToolsPrompts
    • Connection & Initialization: The Client starts and establishes a connection to the Server. The Server registers all its provided Resources, Tools, and Prompts with the Client.
  2. 发现与调用:
    • Discovery & Invocation:
    • 中文: 当用户提出需求时,Client(或运行在Client上的大模型)可以看到可用的Tools列表。模型可以自主决定调用哪个Tool,并生成符合规范的参数。
    • English: When a user makes a request, the Client (or the LLM running on it) can see the list of available Tools. The model can autonomously decide which Tool to call and generate parameters that comply with the specification.
  3. 执行与返回: Client 通过 JSON-RPC 向 Server 发送请求。Server 执行具体的 Tool(如查询数据库、调用API),并将结果以结构化数据(JSON)的形式返回给 Client。
    • Execution & Return: The Client sends a request to the Server via JSON-RPC. The Server executes the specific Tool (e.g., queries a database, calls an API) and returns the result as structured data (JSON) to the Client.
  4. 模型响应: Client 将 Tool 返回的结构化数据作为上下文提供给大模型,大模型据此生成最终面向用户的自然语言回答。
    • Model Response: The Client provides the structured data returned by the Tool as context to the LLM, which then generates the final natural language response for the user.
3. 核心优势
3. Core Advantages
  • 解耦: 模型厂商和工具厂商可以独立发展,无需相互适配。
    • Decoupling: Model vendors and tool vendors can evolve independently without needing to adapt to each other.
  • 安全: 模型本身无法直接操作外部系统,必须通过Server。Server可以实现严格的安全控制、权限校验和审计。
    • Security: The model itself cannot directly operate external systems; it must go through the Server. The Server can implement strict security controls, permission checks, and auditing.
  • 高效: 结构化数据的传输比非结构化文本更高效,减少了模型的幻觉和错误。
    • Efficiency: Transmitting structured data is more efficient than unstructured text, reducing model hallucinations and errors.

二、A2A:智能体协作架构

Part 2: A2A: Agentic AI Architecture

A2A 并非一个像MCP那样的标准化协议,而是一种架构设计模式。它描述了如何将复杂任务分解,由多个 specialized 的智能体通过协作来完成。其核心思想是单一智能体负责单一职责,并通过协同工作解决复杂问题
A2A is not a standardized protocol like MCP, but rather an architectural design pattern. It describes how to decompose complex tasks to be completed by multiple specialized agents through collaboration. Its core idea is one agent, one responsibility, and solving complex problems through teamwork.

1. 核心设计思想:分工与协同
1. Core Design Philosophy: Division of Labor & Collaboration
  • 中文: 模仿人类公司的组织结构。一个项目会有产品经理、设计师、工程师、测试等不同角色。A2A架构中,也有管理者智能体执行者智能体
  • English: It mimics the organizational structure of a human company. A project has different roles like product manager, designer, engineer, and tester. In an A2A architecture, there are Manager Agents and Executor Agents.
  • 中文: 管理者负责分解任务、协调资源、分配工作给 specialized 的执行者,并汇总最终结果。
  • English: The manager is responsible for decomposing tasks, coordinating resources, assigning work to specialized executors, and aggregating the final results.
  • 中文: 执行者负责接收具体指令,利用自身 specialized 的能力(如 coding、writing、data analysis)完成任务,并将结果返回给管理者。
  • English: The executor is responsible for receiving specific instructions, using its specialized capabilities (e.g., coding, writing, data analysis) to complete the task, and returning the result to the manager.
2. 核心技术实现与模式
2. Core Technical Implementation & Patterns

实现A2A架构有多种成熟模式,CrewAI 框架是其中的典型代表。
There are several mature patterns for implementing A2A architecture, with the CrewAI framework being a typical example.

1. 智能体角色定义:
1. Agent Role Definition:
每个智能体在创建时都被赋予明确的角色、目标和能力。
Each agent is assigned a clear role, goal, and capability upon creation.

  • 角色: “资深Python后端开发工程师”
    • Role: “Senior Python Backend Developer”
  • 目标: “编写符合PEP8规范、高性能且无bug的Python代码”
    • Goal: “Write PEP8-compliant, high-performance, and bug-free Python code”
  • 能力: 允许使用execute_python_code工具。
    • Backstory: Allowed to use the execute_python_code tool.

2. 任务分解与编排:
2. Task Decomposition & Orchestration:
任务是工作的最小单元,包含描述、期望输出、分配的智能体和异步依赖关系。
Tasks are the smallest units of work, containing descriptions, expected outputs, assigned agents, and async dependencies.

  • 中文: 管理者智能体会将“开发一个Web应用”分解为:
  • English: A Manager Agent would decompose “Develop a web app” into:
    • 任务A: 设计数据库Schema。(分配给设计器智能体
      • Task A: Design the database schema. (Assign to Designer Agent)
    • 任务B: 编写CRUD API。(分配给后端智能体依赖任务A完成)
      • Task B: Write the CRUD API. (Assign to Backend Agent, depends on Task A completion)
    • 任务C: 编写前端页面。(分配给前端智能体依赖任务B完成)
      • Task C: Write the frontend page. (Assign to Frontend Agent, depends on Task B completion)

3. 协同机制:
3. Collaboration Mechanisms:
智能体之间如何通信和共享信息是实现协同的关键。
How agents communicate and share information is key to collaboration.

  • 共享工作空间: 所有智能体都可以读写一个共享的上下文(如一个文件夹、一个Notion页面),用于存放需求文档、设计稿、代码等中间产物。
    • Shared Workspace: All agents can read and write to a shared context (e.g., a folder, a Notion page) to store intermediate artifacts like requirement documents, designs, and code.
  • 直接对话: 智能体之间可以直接进行“对话”。例如,后端智能体可以向前端智能体询问某个API的预期输入输出格式。
    • Direct Dialogue: Agents can directly “talk” to each other. For example, a Backend Agent can ask a Frontend Agent about the expected I/O format of an API.
3. 核心优势
3. Core Advantages
  • 模块化: 每个智能体功能单一,易于开发、测试和维护。
    • Modularity: Each agent has a single function, making it easy to develop, test, and maintain.
  • 能力增强: 通过分工,整个系统可以完成任何单一智能体都无法处理的超复杂任务。
    • Enhanced Capability: Through division of labor, the entire system can tackle extremely complex tasks that no single agent could handle.
  • 容错性: 一个智能体的失败通常不会导致整个系统崩溃,管理者可以尝试其他解决方案或分配任务给其他智能体。
    • Fault Tolerance: The failure of one agent does not usually crash the entire system. The manager can try other solutions or reassign the task.

三、MCP 与 A2A 的协同

Part 3: The Synergy between MCP and A2A

MCP和A2A并非互斥,而是可以在一个更宏大的智能体系统中完美协同,构成下一代AI应用的基础设施。
MCP and A2A are not mutually exclusive; they can work together perfectly in a grander agent system, forming the infrastructure for the next generation of AI applications.

想象一个场景:一个A2A架构的“软件公司”正在开发项目。
Imagine a scenario: An A2A-based “software company” is developing a project.

  • 中文: 这个“公司”中的每个执行者智能体(前端、后端、测试)都可以配置一个MCP Client
  • English: Each Executor Agent (frontend, backend, tester) in this “company” can be configured with an MCP Client.
  • 中文: 后端智能体通过MCP调用代码执行工具来运行单元测试。
  • English: The Backend Agent uses MCP to call a code execution tool to run unit tests.
  • 中文: 测试智能体通过MCP调用JIRA工具自动创建Bug工单。
  • English: The Tester Agent uses MCP to call a JIRA tool to automatically create bug tickets.
  • 中文: 管理者智能体通过MCP调用Github工具查看项目进度并合并代码。
  • English: The Manager Agent uses MCP to call a GitHub tool to check project progress and merge code.

在这个体系中:
In this system:

  • A2A 解决了宏观的任务编排与多角色协作问题。
    • A2A solves the macroscopic problem of task orchestration and multi-role collaboration.
  • MCP 解决了微观的工具统一调用与安全访问问题。
    • MCP solves the microscopic problem of unified tool invocation and secure access.

总结而言,MCP是智能体的“手和脚”,为其提供了安全、标准化的方式去操作外部世界;而A2A是智能体的“组织和流程”,将多个智能体组织起来,像一支训练有素的团队一样去攻克复杂挑战。二者结合,共同构成了强大且可扩展的智能体系统基石。
In summary, MCP is the agent’s “hands and feet,” providing a safe and standardized way to operate in the external world. A2A is the agent’s “organization and process,” organizing multiple agents to tackle complex challenges like a well-trained team. Together, they form the foundation of powerful and scalable agent systems.


文章转载自:

http://ci2EGPuH.gkmwk.cn
http://CZPjDf7l.gkmwk.cn
http://gW7V9BPk.gkmwk.cn
http://VTISp096.gkmwk.cn
http://5VdSR4AA.gkmwk.cn
http://96OtrE8q.gkmwk.cn
http://cuXEPXvb.gkmwk.cn
http://HObT7Vq0.gkmwk.cn
http://VEDmQFxm.gkmwk.cn
http://bykfXArG.gkmwk.cn
http://2xoDa6qB.gkmwk.cn
http://PCyVsu7U.gkmwk.cn
http://fZqJTfcf.gkmwk.cn
http://oSNZq6RI.gkmwk.cn
http://oepgauGt.gkmwk.cn
http://vkEGIv9i.gkmwk.cn
http://684W2oh4.gkmwk.cn
http://10sx3g72.gkmwk.cn
http://MCNqeG7G.gkmwk.cn
http://E2H7PTRZ.gkmwk.cn
http://hOKq4x6u.gkmwk.cn
http://RYyi97V2.gkmwk.cn
http://pzHqcIER.gkmwk.cn
http://D9e105Fk.gkmwk.cn
http://vVDxLQZI.gkmwk.cn
http://97ZOr9iu.gkmwk.cn
http://1X2NdAgw.gkmwk.cn
http://7rHKDRAw.gkmwk.cn
http://XIvfzGu9.gkmwk.cn
http://ymMfz8aj.gkmwk.cn
http://www.dtcms.com/a/383436.html

相关文章:

  • Java基础 9.13
  • Shell 正则表达式完全指南
  • 玩转ClaudeCode:用Database-MCP实现自然语言操作数据库
  • 【Android】答题系统Web服务器APP应用开发流程详解
  • Web服务器VS应用服务器:核心差异解析
  • 分享一个vue2的tinymce配置
  • spring bean一共有几种作用域
  • Redie详细入门教程2
  • Maven入门_简介、安装与配置
  • Vue组件化开发介绍
  • ​new species of flying reptile1 discovered in Scotland​
  • Spring JDBC与KingbaseES深度集成:构建高性能国产数据库应用实战
  • 闪电科创 SCI专业辅导
  • 【数据结构与算法】图 Floyd算法
  • 代码随想录算法训练营第十一天--二叉树2 || 226.翻转二叉树 / 101.对称二叉树 / 104.二叉树的最大深度 / 111.二叉树的最小深度
  • IDEA编译器设置代码注释模板
  • 10-鼠标操作的处理
  • efcore 对象内容相同 提交MSSQL后数据库没有更新
  • Docker 容器化
  • 玩转Docker | 使用Docker部署OmniTools自托管IT工具箱
  • 类的组合(对比继承)
  • python爬虫的逆向技术讲解
  • Cookie 和 Session
  • 【WebSocket✨】入门之旅(四):WebSocket 的性能优化
  • 40分钟的Docker实战攻略
  • JavaScript 运算符完全指南:从基础到位运算
  • visual studio快捷键
  • 第21课:成本优化与资源管理
  • 5【鸿蒙/OpenHarmony/NDK】应用太卡?用 Node-API 异步任务解决:从卡顿根源到流畅方案
  • 利用OpenCV进行对答题卡上的答案进行识别的案例