文献阅读笔记:脉冲神经网络最新文献合集-IV
序号 | 英文标题 | 作者及机构 | 中文翻译 | 出处 | 链接 |
---|---|---|---|---|---|
1 | Water Management Prediction using Deep Convolutional Spiking Neural Network Optimized with Red Fox Optimization Algorithm Based on IoT | V. Sushmitha Vadone1,2;Sibi Shaji1 & Meenakshi Sundaram3 1School of Computational Sciences and Information Technology, Garden City University, Bangalore, India;2Department of Computer Science and Engineering, NHCE, Bangalore, India | 基于物联网的红狐优化算法优化深度卷积脉冲神经网络水资源管理预测 | Sensing and Imaging 2025 Vol.26 No.1 | 链接 |
2 | A Memristive Spiking Neural Network Circuit for Bio-Inspired Navigation Based on Spatial Cognitive Mechanisms | Zhanfei Chen1;Xiaoping Wang1;Zilu Wang2;Chao Yang1,3;Tingwen Huang4;Jingang Lai1;Zhigang Zeng1 1School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China | 基于空间认知机制的生物启发式导航忆阻脉冲神经网络电路 | IEEE Transactions on Biomedical Circuits and Systems 2025 Vol.19 No.3 P686-698 | 链接 |
3 | Modeling of Spiking Neural Network With Optimal Hidden Layer via Spatiotemporal Orthogonal Encoding for Patterns Recognition | Zenan Huang1;Yinghui Chang2;Weikang Wu2;Chenhui Zhao1;Hongyan Luo1;Shan He1;Donghui Guo3 1Department of Microelectronics and Integrated Circuits, School of Electronic Science and Engineering, Xiamen University, Xiamen, China | 基于时空正交编码的模式识别最优隐层脉冲神经网络建模 | IEEE Transactions on Emerging Topics in Computational Intelligence 2025 Vol.9 No.3 P2194-2207 | 链接 |
4 | S3Det: a fast object detector for remote sensing images based on artificial to spiking neural network conversion | Li Chen (陈立) 1;Fan Zhang (张帆) 1;Guangwei Xie (谢光伟)2;Yanzhao Gao (高彦钊)1;Xiaofeng Qi (祁晓峰)1 & …Mingqian Sun (孙明乾)3 1National Digital Switching System Engineering & Technological R&D Center, Zhengzhou, China | 基于人工神经网络到脉冲神经网络转换的遥感图像快速目标检测器S3Det | Frontiers of Information Technology & Electronic Engineering 2025 Vol.26 No.5 P713-727 | 链接 |
5 | A Distributed Time-of-Flight Sensor System for Autonomous Vehicles: Architecture, Sensor Fusion, and Spiking Neural Network Perception | Edgars Lielamurs1,*;Ibrahim Sayed1;Andrejs Cvetkovs1;Rihards Novickis1;Anatolijs Zencovs1;Maksis Celitans1;Andis Bizuns1;George Dimitrakopoulos2;Jochen Koszescha2 and Kaspars Ozols1 1 Institute of Electronics and Computer Science, Riga, Latvia | 用于自动驾驶车辆的分布式飞行时间传感器系统:架构、传感器融合与脉冲神经网络感知 | Electronics 2025 Vol.14 No.7 P1375 | 链接 |
6 | Batchnorm-Free Binarized Deep Spiking Neural Network for a Lightweight Machine Learning Model | Hasna Nur Karimah1,2;Chankyu Lee3 and Yeongkyo Seo1,2,* 1 Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea | 用于轻量级机器学习模型的无批量归一化二值化深度脉冲神经网络 | Electronics 2025 Vol.14 No.8 P1602 | 链接 |
7 | First demonstration of leaky-integrate and fire neuron based GAA nanosheet FET with ultra-low energy consumption down to 0.8fJ/spike for spiking neural network applications | Madhu Kanche;Dannayak Venkata Sai Adwaith;Pavan Sai V;Venkata Ramakrishna Kotha;Sresta Valasa;Sunitha Bhukya;Shubham Tayal;Narender Malishetty;Narendar Vadthiya | 基于漏积分触发神经元的GAA纳米片场效应晶体管在脉冲神经网络中的超低能耗应用(0.8fJ/脉冲)首次演示 | Physica Scripta 2025 Vol.100 No.6 P065528 | 链接 |
8 | Random heterogeneous spiking neural network for adversarial defense | Jihang Wang1,2,3,4,5;Dongcheng Zhao1,3,4,6,5;Chengcheng Du1,7,3,4;Xiang He1,2,3,4;Qian Zhang1,2,3,4,6;Yi Zeng1,2,7,8,3,4,6,9 1Brain-inspired Cognitive AI Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China | 用于对抗防御的随机异构脉冲神经网络 | iScience 2025 Vol.28 No.6 P112660 | 链接 |
9 | Hardware Implementation of Speech Recognition in Noise-Resilient Photonic Spiking Neural Network With Rate-Coding | Yanan Han1,2;Shuiying Xiang1,3;Zhiquan Huang1;Tao Zou1;Yuna Zhang1;Dianzhuang Zheng1;Yiheng Li1;Yizhi Wang1;Yahui Zhang1;Xingxing Guo1;Yue Hao3 1State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, China | 基于速率编码的抗噪声光子脉冲神经网络语音识别硬件实现 | Journal of Lightwave Technology 2025 Vol.43 No.12 P5789-5796 | 链接 |
10 | From hippocampal neurons to broad spiking neural networks | Yaodong Wang1;Yiping Zuo1;Dan Chen1;Weiping Tu1;Albert Y. Zomaya2;Xiaoli Li3 1National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan 430072, China | 从海马神经元到广义脉冲神经网络 | Neurocomputing 2025 Vol.647 P130547 | 链接 |
11 | Path-following control using spiking neural networks associative maps | Javier Pérez Fernández1;Manuel Alcázar Vargas1;Juan A?6?3Cabrera Carrillo1;Juan J?6?3Castillo Aguilar1;Barys Shyrokau2 1University of Málaga, Spain | 基于脉冲神经网络联想映射的路径跟踪控制 | Robotics and Autonomous Systems 2025 Vol.193 P105077 | 链接 |
12 | Wearable Epilepsy Seizure Detection on FPGA with Spiking Neural Networks | Paola Busia1;Gianluca Leone1;Andrea Matticola1;Luigi Raffo1;Paolo Meloni1 1DIEE, University of Cagliari, Cagliari, Italy | 基于FPGA的脉冲神经网络可穿戴癫痫发作检测系统 | IEEE Transactions on Biomedical Circuits and Systems 2025 P1-11 | 链接 |
13 | Xception Spiking Fractional Neural Network for Oral Squamous Cell Carcinoma Classification Based on Histopathological Images | Singaraju Ramya1;R.I. Minu1;K.T. Magesh2 1Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, India | 基于组织病理图像的Xception脉冲分数神经网络用于口腔鳞状细胞癌分类 | IEEE Access 2025 P1 | 链接 |
14 | Spiking Neural Networks with Random Network Architecture | Zihan Dai;Huanfei Ma | 随机网络架构的脉冲神经网络 | 2025 | 链接 |
15 | Time to Spike? Understanding the Representational Power of Spiking Neural Networks in Discrete Time | Duc Anh Nguyen;Ernesto Araya;Adalbert Fono;Gitta Kutyniok | 何时发放脉冲?理解离散时间下脉冲神经网络的表示能力 | 2025 | 链接 |
16 | Convolutional Spiking Neural Network for Image Classification | Mikhail Kiselev;Andrey Lavrentyev | 用于图像分类的卷积脉冲神经网络 | 2025 | 链接 |
17 | Adversarially Robust Spiking Neural Networks with Sparse Connectivity | Mathias Schmolli;Maximilian Baronig;Robert Legenstein | 具有稀疏连接的对抗鲁棒脉冲神经网络 | 2025 | 链接 |
18 | Neuromorphic Imaging Flow Cytometry combined with Adaptive Recurrent Spiking Neural Networks | Georgios Moustakas;Ioannis Tsilikas;Adonis Bogris;Charis Mesaritakis | 神经形态成像流式细胞术结合自适应递归脉冲神经网络 | 2025 | 链接 |
19 | A Principled Bayesian Framework for Training Binary and Spiking Neural Networks | James A. Walker;Moein Khajehnejad;Adeel Razi | 训练二值化和脉冲神经网络的贝叶斯框架 | 2025 | 链接 |
20 | ASRC-SNN: Adaptive Skip Recurrent Connection Spiking Neural Network | Shang Xu;Jiayu Zhang;Ziming Wang;Runhao Jiang;Rui Yan;Huajin Tang | ASRC-SNN:自适应跳跃递归连接脉冲神经网络 | 2025 | 链接 |
21 | Energy efficiency analysis of Spiking Neural Networks for space applications | Paolo Lunghi;Stefano Silvestrini;Dominik Dold;Gabriele Meoni;Alexander Hadjiivanov;Dario Izzo | 空间应用中脉冲神经网络的能效分析 | 2025 | 链接 |
22 | Adaptive Gradient Learning for Spiking Neural Networks by Exploiting Membrane Potential Dynamics | Jiaqiang Jiang;Lei Wang;Runhao Jiang;Jing Fan;Rui Yan | 利用膜电位动力学的脉冲神经网络自适应梯度学习 | 2025 | 链接 |
23 | Spiking Neural Network: a low power solution for physical layer authentication | Jung Hoon Lee;Sujith Vijayan | 脉冲神经网络:物理层认证的低功耗解决方案 | 2025 | 链接 |
24 | Beyond Pairwise Plasticity: Group-Level Spike Synchrony Facilitates Efficient Learning in Spiking Neural Networks | Yuchen Tian;Assel Kembay;Nhan Duy Truong;Jason K. Eshraghian;Omid Kavehei | 超越成对可塑性:群体级脉冲同步促进脉冲神经网络的高效学习 | 2025 | 链接 |
25 | SpikeX: Exploring Accelerator Architecture and Network-Hardware Co-Optimization for Sparse Spiking Neural Networks | Boxun Xu;Richard Boone;Peng Li | SpikeX:稀疏脉冲神经网络的加速器架构与网络-硬件协同优化探索 | 2025 | 链接 |
26 | Modelling the Effect of Prior Knowledge on Memory Efficiency for the Study of Transfer of Learning: A Spiking Neural Network Approach | Mojgan Hafezi Fard;Krassie Petrova;Nikola Kasabov;Grace Y. Wang | 先验知识对学习迁移研究中记忆效率的影响建模:一种脉冲神经网络方法 | 2025 | 链接 |
27 | Self-cross Feature based Spiking Neural Networks for Efficient Few-shot Learning | Qi Xu;Junyang Zhu;Dongdong Zhou;Hao Chen;Yang Liu;Jiangrong Shen;Qiang Zhang | 基于自交叉特征的脉冲神经网络高效小样本学习 | 2025 | 链接 |
28 | Phi: Leveraging Pattern-based Hierarchical Sparsity for High-Efficiency Spiking Neural Networks | Chiyue Wei;Bowen Duan;Cong Guo;Jingyang Zhang;Qingyue Song;Hai “Helen” Li;Yiran Chen | Phi:利用基于模式的层次稀疏性实现高效脉冲神经网络 | 2025 | 链接 |
29 | Spiking Neural Networks with Temporal Attention-Guided Adaptive Fusion for imbalanced Multi-modal Learning | Jiangrong Shen;Yulin Xie;Qi Xu;Gang Pan;Huajin Tang;Badong Chen | 基于时间注意力引导自适应融合的脉冲神经网络非平衡多模态学习 | 2025 | 链接 |
30 | S3Det: a fast object detector for remote sensing images based on artificial to spiking neural network conversion*# | Li CHEN,FanZHANG,Guangwei XIE,Yanzhao GAO,Xiaofeng QI,Mingqian SUN National Digital Switching System Engineering & Technological R&D Center | 基于人工神经网络到脉冲神经网络转换的遥感图像快速目标检测器S3Det | Frontiers of Information Technology & Electronic Engineering 2025 第5期 | 链接 |