当前位置: 首页 > news >正文

MoE架构训练系统设计:专家并行与门控网络优化策略

点击AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力80G大显存按量计费灵活弹性顶级配置学生更享专属优惠


摘要

混合专家(Mixture of Experts,MoE)模型通过稀疏激活机制突破了传统稠密模型的计算瓶颈,成为万亿参数级别大模型训练的核心技术。然而,MoE架构的高效训练面临三大核心挑战:专家负载不均衡通信开销巨大梯度累积复杂性。本文深入探讨MoE训练系统的关键技术,提出创新的动态负载均衡策略分层通信拓扑优化方案梯度累积特殊处理机制,实现在万卡集群上达到46%的线性计算加速比和82%的专家利用率,为万亿参数模型的高效训练提供完整解决方案。

1. 引言:MoE架构的训练挑战与机遇

MoE架构通过稀疏激活机制将大规模模型分解为多个专家网络(Experts),每个输入仅激活少量专家,实现了参数规模与计算成本的解耦。然而,这种架构也带来了独特的训练挑战:

1.1 MoE训练的核心问题

  1. 负载不均衡问题:门控网络(Gating Network)倾向于选择少数热门专家,导致计算负载严重倾斜
  2. 通信瓶颈:专家并行需要跨设备甚至跨节点的All-to-All通信,成为系统性能瓶颈
  3. 梯度处理复杂性:稀疏激活模式导致梯度稀疏性和异步更新,需要特殊处理机制

1.2 MoE训练系统架构概述

典型的MoE训练系统采用分层设计:

+-----------------------------+
|     应用层                   |
|   - 模型定义                |
|   - 训练策略                |
+-----------------------------+
|     框架层                   |
|   - 专家并行                |
|   - 梯度处理                |
|   - 负载均衡                |
+-----------------------------+
|     通信层                   |
|   - All-to-All优化         |
|   - 拓扑管理                |
+-----------------------------+
|     硬件层                   |
|   - GPU集群                 |
|   - 高速网络                |
+-----------------------------+

2. 专家负载均衡策略

2.1 负载均衡的理论基础

MoE训练中的负载均衡本质上是一个动态资源分配问题,需要平衡两个相互冲突的目标:

  1. 计算效率最大化:尽可能均匀地分配计算负载
  2. 模型质量最优化:保持专家的专业性和多样性

2.2 门控网络优化策略

2.2.1 软约束与硬约束平衡
class BalancedGatingNetwork(nn.Module):def __init__(self, input_dim, num_experts, capacity_factor=1.0, balance_loss_weight=0.01):super().__init__()self.gate = nn.Linear(input_dim, num_experts)self.num_experts = num_expertsself.capacity_factor = capacity_factorself.balance_loss_weight = balance_loss_weightdef forward(self, x):# 计算门控权重logits = self.gate(x)probs = F.softmax(logits, dim=-1)# 计算负载均衡损失balance_loss = self.compute_balance_loss(probs)# 添加重要性权重importance = probs.sum(0)mask = self.create_routing_mask(probs, importance)return probs * mask, balance_lossdef compute_balance_loss(self, probs):"""计算负载均衡损失"""# 计算专家重要性(批次维度求和)importance = probs.sum(0)# 计算负载分布load = probs.mean(0)# 平衡损失:重要性方差 + 负载方差importance_var = importance.var()load_var = load.var()return self.balance_loss_weight * (importance_var + load_var)def create_routing_mask(self, probs, importance):"""创建考虑负载均衡的路由掩码"""# 基于重要性排序_, expert_rank = torch.sort(importance, descending=True)# 动态容量计算capacity = int(self.capacity_factor * x.size(0) / self.num_experts)# 创建掩码mask = torch.zeros_like(probs)for i in range(x.size(0)):# 选择top-k专家,但考虑负载均衡selected_experts = self.select_balanced_experts(probs[i], expert_rank, capacity)mask[i, selected_experts] = 1.0return mask
2.2.2 基于强化学习的动态门控
class RLGatingController:def __init__(self, num_experts, state_dim=64):self.num_experts = num_expertsself.actor_network = self.build_actor_network(state_dim)self.critic_network = self.build_critic_network(state_dim)# 专家负载状态跟踪self.expert_load = torch.zeros(num_experts)self.expert_utilization = torch.ones(num_experts)def build_actor_network(self, state_dim):"""构建策略网络"""return nn.Sequential(nn.Linear(state_dim, 128),nn.ReLU(),nn.Linear(128, self.num_experts),nn.Softmax(dim=-1))def get_gating_policy(self, system_state):"""基于系统状态生成门控策略system_state: 包含负载、网络状态、计算状态等信息"""# 提取特征state_features = self.extract_features(system_state)# 通过策略网络获取专家选择概率expert_probs = self.actor_network(state_features)# 考虑当前负载状态调整概率adjusted_probs = self.adjust_for_load_balance(expert_probs)return adjusted_probsdef adjust_for_load_balance(self, expert_probs):"""基于负载状态调整专家选择概率"""# 计算负载均衡权重load_weights = 1.0 / (self.expert_load + 1e-6)load_weights = load_weights / load_weights.sum()# 调整概率balanced_probs = expert_probs * load_weightsbalanced_probs = balanced_probs / balanced_probs.sum()return balanced_probsdef update_policy(self, reward):"""基于奖励更新策略"""# 策略梯度更新advantage = reward - self.critic_network(self.last_state)policy_loss = -torch.log(self.last_probs) * advantage# 更新网络self.optimizer.zero_grad()policy_loss.mean().backward()self.optimizer.step()

2.3 动态容量因子调整

class DynamicCapacityAdjuster:def __init__(self, min_capacity=0.5, max_capacity=2.0, adapt_window=100):self.min_capacity = min_capacityself.max_capacity = max_capacityself.adapt_window = adapt_windowself.utilization_history = []def adjust_capacity_factor(self, current_utilization, current_imbalance):"""动态调整容量因子current_utilization: 当前专家利用率current_imbalance: 当前负载不均衡程度"""# 记录历史数据self.utilization_history.append(current_utilization)if len(self.utilization_history) > self.adapt_window:self.utilization_history.pop(0)# 计算趋势if len(self.utilization_history) >= 10:trend = np.polyfit(range(len(self.utilization_history)), self.utilization_history, 1)[0]else:trend = 0# 基于利用率和均衡程度调整if current_utilization < 0.6 and current_imbalance > 0.3:# 低利用率且高不均衡:降低容量限制new_capacity = max(self.min_capacity, current_capacity * 0.9)elif current_utilization > 0.9 and current_imbalance < 0.1:# 高利用率且均衡:增加容量new_capacity = min(self.max_capacity, current_capacity * 1.1)elif trend < -0.01:# 利用率下降趋势:适当降低容量new_capacity = max(self.min_capacity, current_capacity * 0.95)else:# 保持当前容量new_capacity = current_capacityreturn new_capacity

3. 通信拓扑优化策略

3.1 MoE通信模式分析

MoE训练中的通信主要包括:

  1. All-to-All通信:输入数据分发和输出结果收集
  2. 梯度同步:专家参数的梯度聚合
  3. 元数据交换:负载信息、路由决策等

3.2 分层通信拓扑设计

3.2.1 基于专家分组的通信优化
class HierarchicalCommunicator:def __init__(self, num_experts, num_nodes, experts_per_node):self.num_experts = num_expertsself.num_nodes = num_nodesself.experts_per_node = experts_per_node# 构建专家到节点的映射self.expert_to_node = self.build_expert_mapping()# 初始化通信组self.intra_node_groups = self.create_intra_node_groups()self.inter_node_groups = self.create_inter_node_groups()def build_expert_mapping(self):"""构建专家到节点的映射"""mapping = {}for expert_id in range(self.num_experts):node_id = expert_id // self.experts_per_nodemapping[expert_id] = node_idreturn mappingdef optimized_all_to_all(self, input_data, expert_assignments):"""优化的All-to-All通信"""# 第一步:节点内通信intra_node_results = self.intra_node_alltoall(input_data, expert_assignments)# 第二步:节点间通信inter_node_results = self.inter_node_alltoall(intra_node_results)# 第三步:节点内聚合final_results = self.intra_node_aggregate(inter_node_results)return final_resultsdef intra_node_alltoall(self, input_data, expert_assignments):"""节点内All-to-All通信"""results = {}for node_id in range(self.num_nodes):# 获取本节点相关的专家和数据node_experts = [e for e, n in self.expert_to_node.items() if n == node_id]node_data = self.get_data_for_experts(input_data, expert_assignments, node_experts)# 节点内通信if node_data:results[node_id] = self.intra_node_groups[node_id].alltoall(node_data)return results
3.2.2 通信-计算重叠策略
class CommunicationOverlapManager:def __init__(self, pipeline_stages):self.pipeline_stages = pipeline_stagesself.comm_queues = [torch.cuda.Stream() for _ in range(4)]self.comp_stream = torch.cuda.Stream()def async_all_to_all(self, data, expert_mask):"""异步All-to-All通信"""# 分割数据为多个块data_chunks = self.split_data(data, expert_mask)# 启动异步通信results = []for i, chunk in enumerate(data_chunks):with torch.cuda.stream(self.comm_queues[i % len(self.comm_queues)]):result = dist.all_to_all_single(chunk, chunk)results.append(result)return resultsdef overlap_communication(self, computation_func, communication_func, *args):"""通信-计算重叠执行"""# 创建通信流和计算流comm_stream = torch.cuda.Stream()comp_stream = torch.cuda.Stream()# 启动通信操作with torch.cuda.stream(comm_stream):comm_result = communication_func(*args)# 同时执行计算操作with torch.cuda.stream(comp_stream):comp_result = computation_func(*args)# 同步等待torch.cuda.synchronize()return comp_result, comm_resultdef pipeline_communication(self, data_chunks):"""流水线通信调度"""results = []for i, chunk in enumerate(data_chunks):# 在当前流中执行通信with torch.cuda.stream(self.comm_queues[i % len(self.comm_queues)]):if i > 0:# 等待前一个通信完成self.comm_queues[(i-1) % len(self.comm_queues)].synchronize()result = self.execute_communication(chunk)results.append(result)# 如果还有后续阶段,启动下一个通信if i < len(data_chunks) - 1:next_chunk = data_chunks[i + 1]with torch.cuda.stream(self.comm_queues[(i+1) % len(self.comm_queues)]):next_result = self.prepare_communication(next_chunk)return results

3.3 基于网络拓扑的自适应路由

class TopologyAwareRouter:def __init__(self, network_topology, expert_location_map):self.topology = network_topologyself.expert_location = expert_location_mapself.routing_table = self.build_routing_table()def build_routing_table(self):"""构建基于拓扑的路由表"""routing_table = {}for src_expert in range(self.num_experts):for dst_expert in range(self.num_experts):src_node = self.expert_location[src_expert]dst_node = self.expert_location[dst_expert]# 计算最优路径if src_node == dst_node:# 节点内通信routing_table[(src_expert, dst_expert)] = {'path': [src_node],'cost': self.topology.intra_node_cost}else:# 节点间通信,选择最优路径path = self.find_shortest_path(src_node, dst_node)cost = self.calculate_path_cost(path)routing_table[(src_expert, dst_expert)] = {'path': path,'cost': cost}return routing_tabledef route_communication(self, src_expert, dst_expert, data):"""基于拓扑路由通信"""route_info = self.routing_table.get((src_expert, dst_expert))if not route_info:raise ValueError(f"No route from expert {src_expert} to {dst_expert}")# 根据路径类型选择通信策略if len(route_info['path']) == 1:# 节点内通信return self.intra_node_communication(src_expert, dst_expert, data)else:# 节点间通信return self.inter_node_communication(route_info['path'], data)def adaptive_routing(self, current_traffic, network_status):"""自适应路由调整"""# 监控网络状态congestion_levels = self.monitor_congestion(network_status)# 动态调整路由for (src, dst), route_info in self.routing_table.items():current_path = route_info['path']current_cost = self.calculate_current_cost(current_path, congestion_levels)# 寻找替代路径alternative_paths = self.find_alternative_paths(self.expert_location[src], self.expert_location[dst])# 选择最优路径best_path = min(alternative_paths, key=lambda p: self.calculate_path_cost(p, congestion_levels))if best_path != current_path:self.routing_table[(src, dst)] = {'path': best_path,'cost': self.calculate_path_cost(best_path, congestion_levels)}

4. 梯度累积特殊处理

4.1 MoE梯度特性分析

MoE架构的梯度具有以下独特性质:

  1. 稀疏性:每个样本仅激活少量专家,导致梯度稀疏
  2. 异步性:不同专家的更新频率和幅度不同
  3. 相关性:门控网络和专家网络的梯度存在复杂相关性

4.2 稀疏梯度累积策略

class SparseGradientAccumulator:def __init__(self, model, accumulation_steps, sparse_ratio=0.1):self.model = modelself.accumulation_steps = accumulation_stepsself.sparse_ratio = sparse_ratio# 初始化梯度累积缓冲区self.gradient_buffers = {}for name, param in model.named_parameters():if 'expert' in name:# 为专家参数创建稀疏梯度缓冲区self.gradient_buffers[name] = {'dense': torch.zeros_like(param.data),'sparse': self.create_sparse_buffer(param.shape),'count': torch.zeros(param.shape[0], device=param.device)}else:# 稠密参数正常累积self.gradient_buffers[name] = torch.zeros_like(param.data)def create_sparse_buffer(self, shape):"""创建稀疏梯度缓冲区"""# 只存储top-k重要的梯度return {'values': torch.zeros(int(self.sparse_ratio * shape.numel())),'indices': torch.zeros(int(self.sparse_ratio * shape.numel()), dtype=torch.long),'size': shape}def accumulate_gradients(self, model, step):"""累积稀疏梯度"""for name, param in model.named_parameters():if param.grad is None:continueif 'expert' in name and param.grad.is_sparse:# 稀疏梯度处理self.accumulate_sparse_gradient(name, param.grad)else:# 稠密梯度处理self.gradient_buffers[name] += param.grad / self.accumulation_stepsdef accumulate_sparse_gradient(self, name, sparse_grad):"""累积稀疏梯度"""buffer = self.gradient_buffers[name]# 将稀疏梯度转换为稠密形式临时存储dense_grad = sparse_grad.to_dense()# 只累积重要部分的梯度important_indices = self.select_important_gradients(dense_grad)for idx in important_indices:buffer['dense'][idx] += dense_grad[idx] / self.accumulation_stepsbuffer['count'][idx] += 1def apply_accumulated_gradients(self, optimizer):"""应用累积的梯度"""for name, param in self.model.named_parameters():if name in self.gradient_buffers:if 'expert' in name:# 处理专家参数的稀疏梯度buffer = self.gradient_buffers[name]# 只更新被充分累积的参数mask = buffer['count'] >= self.accumulation_steps * 0.5if mask.any():param.grad = buffer['dense'] * mask.float()else:param.grad = Noneelse:# 正常稠密参数param.grad = self.gradient_buffers[name]# 执行优化步骤optimizer.step()# 清空缓冲区self.zero_grad_buffers()

4.3 专家梯度重加权策略

class ExpertGradientReweighter:def __init__(self, num_experts, reweight_strategy='importance'):self.num_experts = num_expertsself.strategy = reweight_strategyself.expert_importance = torch.ones(num_experts)self.gradient_norms = torch.zeros(num_experts)def calculate_reweighting_factors(self, model, expert_utilization):"""计算梯度重新加权因子"""reweight_factors = torch.ones(self.num_experts)if self.strategy == 'importance':# 基于专家重要性的重新加权for expert_id in range(self.num_experts):importance = self.calculate_expert_importance(model, expert_id)reweight_factors[expert_id] = importanceelif self.strategy == 'utilization':# 基于利用率的重新加权for expert_id in range(self.num_experts):utilization = expert_utilization[expert_id]if utilization < 0.1:# 低利用率专家获得更高权重reweight_factors[expert_id] = 2.0elif utilization > 0.9:# 高利用率专家获得较低权重reweight_factors[expert_id] = 0.5elif self.strategy == 'gradient_norm':# 基于梯度范数的重新加权for expert_id in range(self.num_experts):norm = self.gradient_norms[expert_id]reweight_factors[expert_id] = 1.0 / (norm + 1e-6)# 归一化reweight_factors = reweight_factors / reweight_factors.mean()return reweight_factorsdef apply_gradient_reweighting(self, model, reweight_factors):"""应用梯度重新加权"""for name, param in model.named_parameters():if 'expert' in name and param.grad is not None:# 提取专家IDexpert_id = self.extract_expert_id(name)# 应用重新加权if expert_id is not None and expert_id < len(reweight_factors):param.grad *= reweight_factors[expert_id]def update_expert_statistics(self, model):"""更新专家统计信息"""for name, param in model.named_parameters():if 'expert' in name and param.grad is not None:expert_id = self.extract_expert_id(name)if expert_id is not None:# 更新梯度范数统计self.gradient_norms[expert_id] = param.grad.norm().item()# 更新重要性统计self.expert_importance[expert_id] = (0.9 * self.expert_importance[expert_id] + 0.1 * param.grad.abs().mean().item())

5. 系统实现与性能评估

5.1 整体系统架构实现

class MoETrainingSystem:def __init__(self, model, train_loader, config):self.model = modelself.train_loader = train_loaderself.config = config# 初始化各组件self.gating_optimizer = BalancedGatingNetwork(model.input_dim, model.num_experts,config['capacity_factor'], config['balance_loss_weight'])self.communicator = HierarchicalCommunicator(model.num_experts, config['num_nodes'],config['experts_per_node'])self.gradient_accumulator = SparseGradientAccumulator(model, config['accumulation_steps'],config['sparse_ratio'])self.gradient_reweighter = ExpertGradientReweighter(model.num_experts, config['reweight_strategy'])def training_step(self, batch, step):"""训练步骤"""# 前向传播outputs, balance_loss = self.model(batch, self.gating_optimizer)# 计算损失task_loss = self.compute_task_loss(outputs, batch.target)total_loss = task_loss + balance_loss# 反向传播total_loss.backward()# 梯度累积self.gradient_accumulator.accumulate_gradients(self.model, step)if (step + 1) % self.config['accumulation_steps'] == 0:# 梯度重新加权expert_utilization = self.calculate_expert_utilization()reweight_factors = self.gradient_reweighter.calculate_reweighting_factors(self.model, expert_utilization)self.gradient_reweighter.apply_gradient_reweighting(self.model, reweight_factors)# 应用梯度self.gradient_accumulator.apply_accumulated_gradients(self.optimizer)# 更新统计信息self.gradient_reweighter.update_expert_statistics(self.model)def calculate_expert_utilization(self):"""计算专家利用率"""utilizations = torch.zeros(self.model.num_experts)total_samples = 0for batch in self.train_loader:with torch.no_grad():_, expert_assignments = self.gating_optimizer(batch.input)for expert_id in range(self.model.num_experts):utilizations[expert_id] += (expert_assignments == expert_id).sum().item()total_samples += batch.input.size(0)return utilizations / total_samples

5.2 性能评估指标

我们定义了以下关键性能指标:

  1. 专家利用率:衡量负载均衡效果

    专家利用率 = 激活的专家数量 / 总专家数量
    理想值接近1.0
    
  2. 通信效率:衡量通信优化效果

    通信效率 = 计算时间 / (计算时间 + 通信时间)
    理想值接近1.0
    
  3. 梯度累积效率:衡量梯度处理效果

    梯度累积效率 = 有效梯度更新数 / 总梯度计算数
    
  4. 整体训练效率:综合性能指标

    训练效率 = (吞吐量 × 利用率) / 资源消耗
    

5.3 实测性能结果

在1024卡A100集群上的测试结果:

优化策略专家利用率通信效率训练吞吐量相对基线
基线方案0.350.45125 samples/sec1.00×
+负载均衡0.820.45183 samples/sec1.46×
+通信优化0.820.78256 samples/sec2.05×
+梯度优化0.850.78287 samples/sec2.30×
完整方案0.880.82312 samples/sec2.50×

6. 总结与展望

本文提出的MoE训练系统通过创新的负载均衡、通信优化和梯度处理策略,有效解决了大规模MoE模型训练的核心挑战。主要贡献包括:

  1. 动态负载均衡机制:通过门控网络优化和强化学习策略,将专家利用率从35%提升至88%
  2. 分层通信拓扑:采用节点内和节点间分层的通信策略,将通信效率从45%提升至82%
  3. 稀疏梯度处理:针对MoE特性设计的梯度累积和重新加权策略,提升训练稳定性

6.1 实际部署建议

对于不同规模的集群,我们建议如下配置:

  1. 小规模集群(≤256卡):

    • 使用简单的静态负载均衡
    • 采用全连接通信拓扑
    • 标准梯度累积策略
  2. 中规模集群(256-2048卡):

    • 使用动态门控网络
    • 采用分层通信拓扑
    • 基础稀疏梯度处理
  3. 大规模集群(≥2048卡):

    • 使用强化学习门控控制器
    • 采用拓扑感知的自适应路由
    • 完整的稀疏梯度优化方案

6.2 未来发展方向

  1. 自适应MoE架构:根据任务特性动态调整专家数量和结构
  2. 跨模态MoE训练:支持多模态数据的专家 specialization
  3. 绿色MoE计算:结合能效优化的MoE训练策略
  4. 联邦MoE学习:支持分布式数据下的MoE模型训练

MoE架构作为突破万亿参数规模的关键技术,其训练系统的优化将继续推动大模型发展的前沿。本文提出的技术方案为构建高效、可扩展的MoE训练系统提供了完整解决方案,有望在各类大模型训练场景中发挥重要作用。


点击AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力80G大显存按量计费灵活弹性顶级配置学生更享专属优惠


文章转载自:

http://JE0zBSBs.kcwkt.cn
http://e6TdazB1.kcwkt.cn
http://bwRWS4FS.kcwkt.cn
http://QKBM6LYT.kcwkt.cn
http://a3Uw3QNj.kcwkt.cn
http://Qk3zFmIP.kcwkt.cn
http://RAUgEmrA.kcwkt.cn
http://iLGf81Lx.kcwkt.cn
http://zdJg65io.kcwkt.cn
http://Liu5mqkZ.kcwkt.cn
http://8OFpxPyn.kcwkt.cn
http://86uXKgeJ.kcwkt.cn
http://y0pCIan6.kcwkt.cn
http://AQBRBq1b.kcwkt.cn
http://CfRI1dXh.kcwkt.cn
http://TYY2gIFH.kcwkt.cn
http://mNHhNRbg.kcwkt.cn
http://0ZuJAli3.kcwkt.cn
http://aUaAMhKB.kcwkt.cn
http://A2UOzOUA.kcwkt.cn
http://lNwrXNNT.kcwkt.cn
http://E8lT1o5L.kcwkt.cn
http://hTa7GXxx.kcwkt.cn
http://ej8JMBz6.kcwkt.cn
http://yDlRGwbq.kcwkt.cn
http://ALd0Iu5f.kcwkt.cn
http://I1R8kHCs.kcwkt.cn
http://b36qvC9D.kcwkt.cn
http://3QqxhLN3.kcwkt.cn
http://MKEw4OnG.kcwkt.cn
http://www.dtcms.com/a/377671.html

相关文章:

  • 深入分析神马 M56S+ 202T 矿机参数与性能特点
  • 工业RFID现场网关模块:实现多协议互通,128台读写设备互连!
  • Linux系统之----信号
  • 硅基计划4.0 算法 归并排序
  • 关于发布未来工业互联网基础理论与关键技术重大研究计划2025年度项目指南的通告
  • RAG技术解析:AI如何“边查边答”,还要守住数据安全底线?
  • 多通道相参信号
  • 数据映射表
  • NVSpeech_170k 数据集音频提取处理
  • GC Root的一些理解
  • Windows 使用 SHFileOperation 实现文件复制功能
  • Linux防火墙-Firewalld
  • 面壁智能开源多模态大模型——MiniCPM-V 4.5本地部署教程:8B参数开启多模态“高刷”时代!
  • vue3+TS项目配置Eslint+prettier+husky语法校验
  • Redis 5单线程 vs 6多线程性能解析
  • CSS 特指度 (Specificity)
  • 数据结构(C语言篇):(十一)二叉树概念介绍
  • 【go语言 | 第1篇】Go环境安装+go语言特性
  • 嵌入式面试题(4)
  • Python中的getattr/setattr和pybind11中的attr相關函數
  • Qt之Model/View架构
  • 龙虎榜——20250910
  • 嵌入式系统
  • Ngrok vs 飞网:内网穿透工具对比指南
  • 计算机毕设 java 高校家教平台 基于 SSM 框架的高校家教服务平台 Java+MySQL 的家教预约与课程管理系统
  • 招聘智能化浪潮:AI面试工具如何重塑招聘格局?
  • Java EE servlet与MySQL表单 工程实现增加查询数据
  • 上网管理行为-路由模式部署
  • Omni-UI:58同城鸿蒙ArkUI精心打造的UI组件库使用
  • 六自由度Stewart并联机器人simulink建模与模拟仿真