当前位置: 首页 > news >正文

神经网络常见层速查表

神经网络常见层速查表

本文总结了深度学习中常见的“层 (Layer)”,包括简称、全称、使用场景和作用,便于快速学习。


🔹 1. 全连接层 (Fully Connected Layer)

  • 简称:FC / Dense / Linear
  • 全称:Fully Connected Layer
  • PyTorchnn.Linear(in_features, out_features)
  • 使用场景:通用任务(分类、回归、MLP)
  • 作用:输入和输出的每个节点都相连,适合通用函数拟合。

🔹 2. 卷积层 (Convolutional Layer)

  • 简称:Conv
  • 全称:Convolutional Layer
  • PyTorchnn.Conv1d, nn.Conv2d, nn.Conv3d
  • 使用场景:图像、视频、语音
  • 作用:用卷积核提取局部特征,权重共享,参数量少。

🔹 3. 池化层 (Pooling Layer)

  • 简称:Pooling
  • 全称:Pooling Layer
  • PyTorchnn.MaxPool2d, nn.AvgPool2d
  • 使用场景:CNN 中常见
  • 作用:缩小特征图尺寸,保留主要特征,降低计算量。

🔹 4. 循环层 (Recurrent Layer)

  • 简称:RNN 系列
  • 全称:Recurrent Neural Network Layer
  • PyTorchnn.RNN, nn.LSTM, nn.GRU
  • 使用场景:文本、语音、时间序列预测
  • 作用:处理序列数据,记忆历史信息。
    • RNN: 基础循环网络
    • LSTM: Long Short-Term Memory,解决长依赖问题
    • GRU: Gated Recurrent Unit,简化版 LSTM

🔹 5. 归一化层 (Normalization Layer)

  • 简称:BN / LN / IN
  • 全称:Batch Normalization / Layer Normalization / Instance Normalization
  • PyTorchnn.BatchNorm1d, nn.LayerNorm, nn.InstanceNorm2d
  • 使用场景:各种深度学习模型
  • 作用:稳定训练,加快收敛。

🔹 6. 正则化层 (Regularization Layer)

  • 简称:Dropout
  • 全称:Dropout Layer
  • PyTorchnn.Dropout(p=0.5)
  • 使用场景:防止过拟合
  • 作用:训练时随机“丢弃”部分神经元连接。

🔹 7. 注意力层 (Attention Layer)

  • 简称:Attention
  • 全称:Attention Layer / Multi-Head Attention
  • PyTorchnn.MultiheadAttention
  • 使用场景:NLP,Transformer,LLM
  • 作用:让模型选择性关注输入的重要部分。

🔹 8. 嵌入层 (Embedding Layer)

  • 简称:Embedding
  • 全称:Embedding Layer
  • PyTorchnn.Embedding(num_embeddings, embedding_dim)
  • 使用场景:自然语言处理(词向量表示)
  • 作用:将离散的类别(如单词 ID)映射为稠密向量。

🔹 9. 上采样层 (Upsampling Layer)

  • 简称:Deconv / Transposed Conv
  • 全称:Upsampling Layer / Deconvolution Layer
  • PyTorchnn.ConvTranspose2d, nn.Upsample
  • 使用场景:生成模型(GAN)、图像分割 (U-Net)
  • 作用:扩大特征图尺寸,重建细节信息。

📌 总结

类别简称全称使用场景作用
全连接层FCFully Connected Layer分类、回归输入输出全连接
卷积层ConvConvolutional Layer图像、语音提取局部特征
池化层PoolingPooling LayerCNN降维、提取主要特征
循环层RNN/LSTM/GRURecurrent Neural Network Layer序列数据记忆历史信息
归一化层BN/LN/INBatch/Layer/Instance Norm通用稳定训练
正则化层DropoutDropout Layer防过拟合随机丢弃连接
注意力层AttentionAttention LayerNLP/Transformer选择性关注
嵌入层EmbeddingEmbedding LayerNLP类别转稠密向量
上采样层DeconvDeconvolution LayerGAN/U-Net放大特征图

✍️ 一句话记忆:

全连接最通用,卷积看图像,循环管时间,归一化保稳定,Dropout 防过拟合,注意力会聚焦,嵌入层懂语义,上采样能重建。


文章转载自:

http://nMrOCUcf.gybnk.cn
http://N7dIW7hy.gybnk.cn
http://yn4xSjHz.gybnk.cn
http://CrDxbPIW.gybnk.cn
http://jx0eJfGG.gybnk.cn
http://TDYywHxh.gybnk.cn
http://nTEgvXH7.gybnk.cn
http://hEtv00O6.gybnk.cn
http://CFQR6Dtw.gybnk.cn
http://D4sGr29D.gybnk.cn
http://3j1Wpp6u.gybnk.cn
http://WVU8qOKR.gybnk.cn
http://uDKVrsPo.gybnk.cn
http://wu7VRBQt.gybnk.cn
http://CCrwSA8m.gybnk.cn
http://b4k80zx9.gybnk.cn
http://aRn8qr2M.gybnk.cn
http://0FWXj2Ro.gybnk.cn
http://H8aszjBf.gybnk.cn
http://YzW2419q.gybnk.cn
http://hSpXjCST.gybnk.cn
http://uCjeCRUr.gybnk.cn
http://1QmgdxRp.gybnk.cn
http://Id0DxJSD.gybnk.cn
http://X7kWUWjU.gybnk.cn
http://Unqzj6sy.gybnk.cn
http://M7oUgCuD.gybnk.cn
http://KdkQIvdu.gybnk.cn
http://znWHDNyv.gybnk.cn
http://huHMDc37.gybnk.cn
http://www.dtcms.com/a/376839.html

相关文章:

  • 算法练习——55.跳跃游戏
  • linux驱动开发
  • 今日分享 二分算法及多语言实现
  • 【代码随想录算法训练营——Day8】字符串——344.反转字符串、541.反转字符串II、卡码网:54.替换数字
  • 软件项目验收中第三方检测服务总流程
  • Python采集1688拍立淘按图搜索,json数据返回
  • 【卷积神经网络详解与实例】4——感受野
  • 多模态学习双核引擎:对齐建立连接,融合释放价值
  • unity开发类似个人网站空间
  • 【不背八股】10.Redis知识点汇总
  • MySQL 整型数据类型:选对数字类型,让存储效率翻倍
  • OpenCV的图像金字塔
  • PMP考试学习计划与知识大纲
  • 自然语言处理开源框架全面分析
  • antd v5 support React is 16 ~ 18. see https://u.ant.design/v5-for-19 for...
  • 【硬件-笔试面试题-82】硬件/电子工程师,笔试面试题(知识点:讲讲单片机的内部晶振与外部晶振)
  • 【计算机网络 | 第12篇】网络应用原理
  • 【竞赛系列】机器学习实操项目05——客户信用评估模型进阶流程(含XGBoost、LightGBM、CatBoost 高级模型对比与参数优化)
  • 机器学习的本质:从跑模型到真正解决问题
  • LeakCanary最新稳定版
  • 个人博客系统-测试报告
  • 生活中的各种造型 参考多图
  • 独家 | 抖音生活服务调整:涂晴接管市场和达人运营,旭凯担任北部大区负责人
  • Spring Bean扫描
  • 第2讲 机器学习 - 导论
  • 【开题答辩全过程】以 基于Android的智慧旅游APP开发为例,包含答辩的问题和答案
  • Linux服务器的系统安全强化超详细教程
  • Dockerfile构建容器需要注意的事项。
  • YOLO 发展前景与创新点
  • 一个基于 .NET 开源、轻便的 Windows 优化工具,适用于 Win7 - Win11 最新版的优化!