当前位置: 首页 > news >正文

面向 6G 网络的 LLM 赋能物联网:架构、挑战与解决方案

英文:LLM-Empowered IoT for 6G Networks: Architecture, Challenges, and Solutions
中文:面向 6G 网络的 LLM 赋能物联网:架构、挑战与解决方案

作者
Xiaopei Chen(华南理工大学未来技术学院 / 鹏城实验室前沿研究中心)
Wen Wu(鹏城实验室前沿研究中心)
Liang Li(鹏城实验室前沿研究中心)
Fei Ji(华南理工大学电子与信息学院)

论文出处
IEEE Internet of Things Magazine,已录用,作者稿(未最终编辑)。DOI: 10.1109/MIOT.2025.3582641

主要内容梳理

引言


作者指出 6G 将带来超低时延、超大带宽、全域智能与自治等革命性能力,使物联网(IoT)在设备规模、数据处理与决策自动化三方面发生深刻变革。与此同时,GPT、LLaMA 等大型语言模型(LLM)在 NLP、CV 等多领域表现出强大泛化能力,其“预训练–微调”范式天然契合 6G 时代 IoT 场景。然而,现有 LLM 重度依赖云端,带来高时延、高带宽及隐私风险,且资源受限的 IoT 设备无法直接承载完整模型。因此,文章提出“LLM-Empowered IoT”双层愿景:一方面用 LLM 提升 IoT 应用与网络管理(LLM for 6G IoT);另一方面在 6G IoT 边缘基础设施上部署并运行 LLM(LLM on 6G IoT),并给出内存友好的分裂联邦学习(SFL)框架以解决微调阶段的资源瓶颈。

第二节 6G 时代的 IoT 场景与 LLM 基础


该节首先勾勒 6G 物联网的典型应用:智能交通(V2X 与全自动驾驶)、工业 IoT(超低时延机器人控制)、智慧城市(城市级感知与主动管理)、eHealth(远程手术、可穿戴监测、脑机接口)、空天地海一体化 IoT(卫星、船舶、无人机协同)。随后回顾 LLM 发展历程:2017 年 Transformer 架构奠定注意力机制基础;2018-2019 年 BERT/GPT-1 确立预训练-微调范式;2020 年后 GPT-3、PaLM、LLaMA 等模型展示规模定律(scaling law),但高质量公开数据预计在 2026 年左右枯竭。

第三节 LLM for 6G IoT:用 LLM 提升 IoT 智能


该节聚焦“LLM 为 IoT 做什么”。

  • LLM 赋能 IoT 应用:
    – 智慧医疗——LLM 解析病历、文献及可穿戴设备实时数据,辅助诊断、预测风险并给出个性化健康建议。
    – 智慧家庭——LLM 通过语音/文本理解实现情境感知控制;学习用户习惯自动调节灯光温度;融合视觉与传感器数据识别异常行为。
    – 智慧城市——LLM 分析交通流量、摄像头、GPS 大数据,实时优化信号灯、缓解拥堵。

  • LLM 增强网络管理:
    IoT 设备持续产生日志、信号、传感等多模态数据,边缘服务器先进行预处理并提取关键信息;云侧 LLM 依据全局信息和优化目标生成资源调度策略,再下发给边缘与终端执行。相比传统基于数学模型的优化,LLM 可直接从数据学习策略,适配动态场景。

第四节 LLM on 6G IoT:如何在 IoT 上部署 LLM


该节讨论“LLM 如何在 IoT 上跑起来”。

  • 边缘微调
    – 参数高效微调(PEFT):冻结大部分预训练权重,仅更新少量附加参数(Additive)、选定的原参数(Selective)或重参数化矩阵(Reparameterization,如 LoRA),显著降低计算与通信开销,但仍需较大激活内存。
    – 分布式学习框架:
    · 协同设备分裂学习(Collaborative devices split learning)
    · 服务器-设备分裂学习(Server-device split learning)
    · 分裂联邦学习(Split Federated Learning, SFL):结合联邦学习与分裂学习优点,客户端只训练局部子模型,剩余计算卸载到服务器,降低终端内存占用并保留隐私。
    · 知识蒸馏式迁移学习:终端运行轻量化模型,边缘服务器运行大模型,通过蒸馏实现知识迁移。

  • 边缘推理
    – 终端推理:对模型进行量化、剪枝、蒸馏后直接在设备端运行,响应快但精度可能不足。
    – 协同推理(Co-Inference):按层切分模型,终端执行前几层后将中间特征发送至边缘/云端继续推理,既减轻终端负担,又减少原始数据传输量,兼顾隐私与时延。

第五节 内存高效的分裂联邦学习(SFL)框架


作者提出一个面向异构 IoT 设备的内存友好 SFL 框架:

  • 系统由边缘服务器与若干 IoT 客户端构成,服务器保存完整 LLM 与多套 LoRA 适配器;客户端仅保存嵌入层加少量浅层 Transformer 及对应 LoRA 模块。

  • 训练分“客户端并行”与“服务器串行”两阶段:客户端本地前反向计算后上传激活与梯度;服务器按调度顺序依次加载各客户端对应的 LoRA 模块完成剩余计算,并通过 FedAVG 聚合全局 LoRA 适配器后再下发。

  • 调度策略:服务器优先处理客户端反向传播时间长的任务,以隐藏通信与计算延迟。
    实验结果表明,该方法相比传统 SL 在只增加 10% 内存的情况下缩短 40% 训练时间;相比标准 SFL 节省 79% 内存、缩短 6% 训练时间。

第六节 案例研究


作者在 RTX 4080S 服务器与六款异构终端(Jetson Nano、TX2、Snapdragon 8/8s Gen3、A17 Pro、M3)上,用 BERT-base 与 CARER 情感数据集验证框架效果,指标设定为 LoRA rank=16、batch=16、学习率 1e-5、序列长度 128、目标精度 0.89。结果再次验证了 SFL 框架在内存占用与收敛时间上的优势。

第七节 开放问题

  • 资源感知的 LLM 部署:如何结合模型压缩、分裂计算、自适应负载分配,解决 IoT 设备内存、算力、能耗差异巨大的问题。

  • 按需部署:面对任务多样且动态变化,如何借助边缘缓存与压缩技术实现“用多少、放哪里”的弹性部署,同时在性能与资源间取得平衡。

  • 数据隐私与安全:IoT 数据敏感且设备安全能力参差不齐,需引入差分隐私、U 形分裂学习等机制,防范数据泄露、模型逆向、投毒攻击等风险。

结论


文章总结提出的 LLM-Empowered IoT 架构:

  • LLM for 6G IoT 旨在用 LLM 提升 IoT 应用智能与网络管理效率;

  • LLM on 6G IoT 通过边缘计算、分布式学习与协同推理,解决在资源受限设备上运行 LLM 的挑战;

  • 内存高效的 SFL 框架显著降低微调阶段的内存与时间开销。
    作者指出,6G、IoT 与 LLM 的深度融合有望构建未来智能网络的基石,但仍需在资源、部署、安全等方面持续创新。

http://www.dtcms.com/a/351484.html

相关文章:

  • 相机激光安全等级和人眼安全
  • 第九届MathorCup高校数学建模挑战赛-D题:钢水“脱氧合金化”配料方案的优化
  • 五自由度磁悬浮轴承同频振动抑制:从机理拆解到传递函数验证的核心方案
  • 【图像算法 - 24】基于深度学习与 OpenCV 实现人员跌倒识别系统(目标检测方案 - 跌倒即目标)
  • Baumer高防护相机如何通过YoloV8深度学习模型实现形状检测器的使用(YOLOv8 Shape Detector)
  • 无人机航拍数据集|第32期 无人机采矿区作业目标检测YOLO数据集202张yolov11/yolov8/yolov5可训练
  • GaussDB 数据库架构师修炼(十八) SQL引擎-计划管理-SPM
  • Windows MCP 安装教程:让 AI 代理与 Windows 系统无缝交互
  • plantsimulation知识点 RGV小车前端与后端区别
  • 数字营销岗位需要具备的能力有哪些
  • 洛谷 P12332 题解
  • 图论入门与邻接表详解
  • 代码随想录Day62:图论(Floyd 算法精讲、A * 算法精讲、最短路算法总结、图论总结)
  • ElementUI之菜单(Menu)使用
  • 美团购物车小球动画效果
  • Docker Compose 使用指南 - 1Panel 版
  • 国产化芯片ZCC3790--同步升降压控制器的全新选择, 替代LT3790
  • 第17章|PowerShell 安全警报——高分学习笔记(运维实战向)
  • Tableau Server高危漏洞允许攻击者上传任意恶意文件
  • 数据库云平台:提升运维效率与降低成本的有效工具
  • 【Ubuntu系统实战】一站式部署与管理MySQL、MongoDB、Redis三大数据库
  • WPS 智能文档,5分钟上手!
  • React学习教程,从入门到精通, React教程:构建你的第一个 React 应用(1)
  • 电力时序预测相关论文
  • 物流配送路径规划项目方案
  • yggjs_rbutton React按钮组件v1.0.0 最佳实践指南
  • 从陪聊到客服,声网如何支撑AI实时交互?
  • Rust 登堂 之 函数式编程(三)
  • 面试之JVM
  • CentOS 7 服务器初始化:从 0 到 1 的安全高效配置指南