当前位置: 首页 > news >正文

图论Day6学习心得

kruskal算法

53. 寻宝(第七期模拟笔试)

prim 算法是维护节点的集合,而 Kruskal 是维护边的集合

kruscal的思路:

  • 边的权值排序,因为要优先选最小的边加入到生成树里
  • 遍历排序后的边
    • 如果边首尾的两个节点在同一个集合,说明如果连上这条边图中会出现环
    • 如果边首尾的两个节点不在同一个集合,加入到最小生成树,并把两个节点加入同一个集合

这个算法其实是从离散数学的图论那一章衍生出来的,具体的过程可以在B站找一个动态视频看一看,文字演示比较难描述。

代码实现中,还有一个需要注意的点:如果将两个节点加入同一个集合,又如何判断两个节点是否在同一个集合呢

这里就涉及到之前的并查集。

并查集主要就两个功能:

  • 将两个元素添加到一个集合中
  • 判断两个元素在不在同一个集合

本题代码如下,已经详细注释:


#include <iostream>
#include <vector>
#include <algorithm>using namespace std;// l,r为 边两边的节点,val为边的数值
struct Edge {int l, r, val;
};// 节点数量
int n = 10001;
// 并查集标记节点关系的数组
vector<int> father(n, -1); // 节点编号是从1开始的,n要大一些// 并查集初始化
void init() {for (int i = 0; i < n; ++i) {father[i] = i;}
}// 并查集的查找操作
int find(int u) {return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}// 并查集的加入集合
void join(int u, int v) {u = find(u); // 寻找u的根v = find(v); // 寻找v的根if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回father[v] = u;
}int main() {int v, e;int v1, v2, val;vector<Edge> edges;int result_val = 0;cin >> v >> e;while (e--) {cin >> v1 >> v2 >> val;edges.push_back({v1, v2, val});}// 执行Kruskal算法// 按边的权值对边进行从小到大排序sort(edges.begin(), edges.end(), [](const Edge& a, const Edge& b) {return a.val < b.val;});// 并查集初始化init();// 从头开始遍历边for (Edge edge : edges) {// 并查集,搜出两个节点的祖先int x = find(edge.l);int y = find(edge.r);// 如果祖先不同,则不在同一个集合if (x != y) {result_val += edge.val; // 这条边可以作为生成树的边join(x, y); // 两个节点加入到同一个集合}}cout << result_val << endl;return 0;
}

大家可以根据代码按照顺序走一遍,可以对算法有一个更清晰的理解。

然后看下一个算法:拓扑排序

117. 软件构建

本题是拓扑排序的经典题目。

一聊到拓扑排序,可能会想这是排序,不会想到这是图论算法。

其实拓扑排序是经典的图论问题。

拓扑排序的应用场景:

大学排课,例如 先上A课,才能上B课,上了B课才能上C课,上了A课才能上D课,等等一系列这样的依赖顺序。 问给规划出一条完整的上课顺序。

拓扑排序在文件处理上也有应用,在做项目安装文件包的时候,经常发现复杂的文件依赖关系, A依赖B,B依赖C,B依赖D,C依赖E 等等。

如果给出一条线性的依赖顺序来下载这些文件呢?

当上面的依赖关系是一百对,一千对甚至上万个依赖关系,这些依赖关系中可能还有循环依赖,你如何发现循环依赖呢,又如果排出线性顺序呢?

所以拓扑排序就是专门解决这类问题的。

概括来说,给出一个 有向图,把这个有向图转成线性的排序就叫拓扑排序

当然拓扑排序也要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。

所以拓扑排序也是图论中判断有向无环图的常用方法

拓扑排序指的是一种 解决问题的大体思路, 而具体算法,可能是广搜也可能是深搜。

其实只要能在把 有向无环图 进行线性排序 的算法 都可以叫做 拓扑排序。

实现拓扑排序的算法有两种:卡恩算法(BFS)和DFS

卡恩1962年提出这种解决拓扑排序的思路

一般来说只需要掌握 BFS (广度优先搜索)就可以了,清晰易懂,如果还想多了解一些,可以再去学一下 DFS 的思路,但 DFS 不是本篇重点。

接下来我们来讲解BFS的实现思路。

以题目中示例为例如图:

做拓扑排序的话,如果肉眼去找开头的节点,一定能找到 节点0 吧,都知道要从节点0 开始。

但为什么能找到 节点0呢,因为我们肉眼看着 这个图就是从 节点0出发的。

作为出发节点,它有什么特征?

节点0 的入度 为0 出度为2, 也就是 没有边指向它,而它有两条边是指出去的。

节点的入度表示 有多少条边指向它,节点的出度表示有多少条边 从该节点出发。

所以当做拓扑排序的时候,应该优先找入度为 0 的节点,只有入度为0,它才是出发节点。 理解以上内容很重要

接下来给出 拓扑排序的过程,两步:

  1. 找到入度为0 的节点,加入结果集
  2. 将该节点从图中移除

循环以上两步,直到 所有节点都在图中被移除了。

结果集的顺序,就是想要的拓扑排序顺序 (结果集里顺序可能不唯一)

为了每次可以找到所有节点的入度信息,要在初始化的时候,就把每个节点的入度 和 每个节点的依赖关系做统计。

代码如下:

cin >> n >> m;
vector<int> inDegree(n, 0); // 记录每个文件的入度
vector<int> result; // 记录结果
unordered_map<int, vector<int>> umap; // 记录文件依赖关系while (m--) {// s->t,先有s才能有tcin >> s >> t;inDegree[t]++; // t的入度加一umap[s].push_back(t); // 记录s指向哪些文件
}

找入度为0 的节点,需要用一个队列放存放。

因为每次寻找入度为0的节点,不一定只有一个节点,可能很多节点入度都为0,所以要将这些入度为0的节点放到队列里,依次去处理。

代码如下:


queue<int> que;
for (int i = 0; i < n; i++) {// 入度为0的节点,可以作为开头,先加入队列if (inDegree[i] == 0) que.push(i);
}

开始从队列里遍历入度为0 的节点,将其放入结果集。


while (que.size()) {int  cur = que.front(); // 当前选中的节点que.pop();result.push_back(cur);// 将该节点从图中移除 }

这里面还有一个很重要的过程,如何把这个入度为0的节点从图中移除呢?

为什么要把节点从图中移除?

为的是将 该节点作为出发点所连接的边删掉。

删掉的目的是什么呢?

要把该节点作为出发点所连接的节点的 入度 减一。

如果这里不理解,看上面的模拟过程第一步:

这事节点1 和 节点2 的入度为 1。

将节点0删除后,图为这样:

那么 节点0 作为出发点 所连接的节点的入度 就都做了 减一 的操作。

此时 节点1 和 节点 2 的入度都为0, 这样才能作为下一轮选取的节点。

所以,在代码实现的过程中,本质是要将 该节点作为出发点所连接的节点的 入度 减一 就可以了,这样好能根据入度找下一个节点,不用真在图里把这个节点删掉。

该过程代码如下:


while (que.size()) {int  cur = que.front(); // 当前选中的节点que.pop();result.push_back(cur);// 将该节点从图中移除 vector<int> files = umap[cur]; //获取cur指向的节点if (files.size()) { // 如果cur有指向的节点for (int i = 0; i < files.size(); i++) { // 遍历cur指向的节点inDegree[files[i]] --; // cur指向的节点入度都做减一操作// 如果指向的节点减一之后,入度为0,说明是我们要选取的下一个节点,放入队列。if(inDegree[files[i]] == 0) que.push(files[i]); }}}

最后代码如下:

#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {int m, n, s, t;cin >> n >> m;vector<int> inDegree(n, 0); // 记录每个文件的入度unordered_map<int, vector<int>> umap;// 记录文件依赖关系vector<int> result; // 记录结果while (m--) {// s->t,先有s才能有tcin >> s >> t;inDegree[t]++; // t的入度加一umap[s].push_back(t); // 记录s指向哪些文件}queue<int> que;for (int i = 0; i < n; i++) {// 入度为0的文件,可以作为开头,先加入队列if (inDegree[i] == 0) que.push(i);//cout << inDegree[i] << endl;}// int count = 0;while (que.size()) {int  cur = que.front(); // 当前选中的文件que.pop();//count++;result.push_back(cur);vector<int> files = umap[cur]; //获取该文件指向的文件if (files.size()) { // cur有后续文件for (int i = 0; i < files.size(); i++) {inDegree[files[i]] --; // cur的指向的文件入度-1if(inDegree[files[i]] == 0) que.push(files[i]);}}}if (result.size() == n) {for (int i = 0; i < n - 1; i++) cout << result[i] << " ";cout << result[n - 1];} else cout << -1 << endl;}

http://www.dtcms.com/a/340848.html

相关文章:

  • 源码编译部署 LAMP 架构详细步骤说明
  • 算法第五十二天:图论part03(第十一章)
  • 《算法导论》第 34 章 - NP 完全性
  • HTTP的协议
  • 【爬虫实战-IP代理的重要性二】 以Selenium为例
  • 在 Golang 中复用 HTTP 连接
  • JavaFx 动画-笔记
  • Docker操作速查表
  • MFQ测试分析与测试设计方法学习总结 (KYM)
  • 嵌入式开发学习———Linux环境下网络编程学习(四)
  • Java设计模式-命令模式
  • GitHub 热榜项目 - 日榜(2025-08-20)
  • Flask 之 Request 对象详解:全面掌握请求数据处理
  • 【NFTurbo】基于Redisson滑动窗口实现验证码发送限流
  • 如何在高并发下,保证共享数据的一致性
  • RabbitMQ的架构设计是什么样的
  • Unity 之如何使用Pico4u锚点功能实现一个世界锁GameRoot
  • 第二十七天:游戏组队问题
  • 【GPT入门】第49课 LlamaFacotory 训练千问
  • Mac电脑 Pixelmator Pro 专业图像处理【媲美PS】
  • UE5 InVideo插件打包报错
  • Linux 下实现“连 root 都无法查看和删除”的加密文件夹(附一键挂载 + 自动超时退出)
  • 【P7071 [CSP-J2020] 优秀的拆分 - 洛谷 https://www.luogu.com.cn/problem/P7071】
  • 织梦素材站网站源码 资源付费下载交易平台源码
  • 棒子出品,无须破解!
  • PyTorch API 6
  • 深度学习实战116-基于Qwen大模型与层次化对齐评分模型(HASM)的中学数学主观题自动批改系统
  • 常见开源协议详解:哪些行为被允许?哪些被限制?
  • AV1视频编码器2024-2025技术进展与行业应用分析
  • 本地部署的终极多面手:Qwen2.5-Omni-3B,视频剪、音频混、图像生、文本写全搞定