当前位置: 首页 > news >正文

基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a/matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

.................................................................
figure;
plot(gb1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');


 
figure
plot(gb1,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');


 
X     = g1;
 
%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',X(6), ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...           
    'SequenceLength',1,...
    'MiniBatchSize',64,...
    'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;


figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');


%预测
for i = 1:length(Xtest)
    Ypred(i)  = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on 
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')

rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差

title(sprintf('PSO-biLSTM分析-RMSE=%.3f', rmse));

save R3.mat Ypred Ytest rmse Rmsev
208
 

4.算法理论概述

        在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。

       LSTM是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

       BiLSTM 是在 LSTM 基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM 由一个前向 LSTM 和一个后向 LSTM 组成。

       这种结构使得 BiLSTM 能够同时利用序列的前文和后文信息,在处理需要全局信息的序列预测任务时具有明显优势。

       在本课题中,将pso应用于BiLSTM主要是为了优化BiLSTM的超参数,如学习率、隐藏层神经元数量等,以提升其预测性能。大致的步骤如下:

   1.随机初始化一群粒子的位置和速度,每个粒子的位置对应一组 BiLSTM 的参数。

   2.使用训练集对 BiLSTM 进行训练,并根据验证集的预测结果定义适应度函数。常见的适应度函数是均方误差(MSE):

3.PSO 迭代优化

        PSO能够在参数空间中进行全局搜索,有助于找到更优的BiLSTM参数组合,避免陷入局部最优解。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

  • mysql大数量表添加索引方案
  • Linux提权之环境劫持提权(九)
  • 大语言模型中的 Token如何理解?
  • Linux 命令大全完整版(03)
  • 【嵌入式Linux应用开发基础】多线程编程
  • 基于AIGC的图表自动化生成工具「图表狐」深度评测:如何用自然语言30秒搞定专业级数据可视化?
  • ABC381E题解
  • 数据结构之二叉树的定义及实现
  • Unity使用IL2CPP打包时,我们应该注意什么?如何避免(可以举例说明)
  • 创建虚拟环境以及配置对应的项目依赖
  • DeepSeek技术全景解析:架构创新与行业差异化竞争力
  • Spring Boot数据访问(JDBC)全解析:从基础配置到高级调优
  • 20-R 绘图 - 饼图
  • 游戏设计模式阅读 - 游戏循环
  • Spring Security+JWT (5)
  • 红队内网攻防渗透:内网渗透之内网对抗:实战项目VPC2打靶父子域三层路由某绒免杀下载突破约束委派域控提权
  • 深度解析:大模型在多显卡服务器下的通信机制与分布式训练——以DeepSeek、Ollama和vLLM为例
  • 安全面试4
  • 谷歌浏览器更新后导致的刷新数据无法显示
  • C++标准库提供了哪些智能指针类型以及它们的区别
  • 学会网站建设总结/体验营销策划方案
  • 北京网站制作公司哪家好/快手刷评论推广网站
  • 网站建设软件开发工作室整站模板/百度网盘人工客服电话
  • 需要企业网站建设/网上营销的平台有哪些
  • 网站服务器时间在哪里查询/如何优化关键词搜索排名
  • 微信会员卡管理系统怎么开通/百度快照优化的优势是什么