当前位置: 首页 > news >正文

[机器学习]08-基于逻辑回归模型的鸢尾花数据集分类

使用sklearnLogisticRegression多分类模型

程序代码:

import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import datasets
from sklearn import preprocessing
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipelinedf = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=0)
x = df.values[:, :-1]
y = df.values[:, -1]
print('x = \n', x)
print('y = \n', y)
le = preprocessing.LabelEncoder()
le.fit(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])
print(le.classes_)
y = le.transform(y)
print('Last Version, y = \n', y)x = x[:, 0:2]
print(x)
print(y)
#x = StandardScaler().fit_transform(x)
lr = LogisticRegression()   # Logistic回归模型
lr.fit(x, y.ravel())        # 根据数据[x,y],计算回归参数X = x
Y = y
N, M = 500, 500     # 横纵各采样多少个值
x1_min, x1_max = X[:, 0].min(), X[:, 0].max()   # 第0列的范围
x2_min, x2_max = X[:, 1].min(), X[:, 1].max()   # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2)                    # 生成网格采样点
x_test = np.stack((x1.flat, x2.flat), axis=1)   # 测试点
print(x_test)cm_light = mpl.colors.ListedColormap(['#009933', '#ff6666', '#33ccff'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = lr.predict(x_test)       # 预测值
y_hat = y_hat.reshape(x1.shape)                 # 使之与输入的形状相同
plt.pcolormesh(x1, x2, y_hat)     # 预测值的显示
plt.scatter(X[:, 0], X[:, 1], c=Y.ravel(), edgecolors='k', s=50, cmap=cm_dark)
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
plt.show()

运行结果:

x = 
[[4.9 3.0 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5.0 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5.0 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3.0 1.4 0.1]
[4.3 3.0 1.1 0.1]
[5.8 4.0 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1.0 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5.0 3.0 1.6 0.2]
[5.0 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.0 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.1 1.5 0.1]
[4.4 3.0 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5.0 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5.0 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3.0 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5.0 3.3 1.4 0.2]
[7.0 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4.0 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1.0]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5.0 2.0 3.5 1.0]
[5.9 3.0 4.2 1.5]
[6.0 2.2 4.0 1.0]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3.0 4.5 1.5]
[5.8 2.7 4.1 1.0]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4.0 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3.0 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3.0 5.0 1.7]
[6.0 2.9 4.5 1.5]
[5.7 2.6 3.5 1.0]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1.0]
[5.8 2.7 3.9 1.2]
[6.0 2.7 5.1 1.6]
[5.4 3.0 4.5 1.5]
[6.0 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3.0 4.1 1.3]
[5.5 2.5 4.0 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3.0 4.6 1.4]
[5.8 2.6 4.0 1.2]
[5.0 2.3 3.3 1.0]
[5.6 2.7 4.2 1.3]
[5.7 3.0 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3.0 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6.0 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3.0 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3.0 5.8 2.2]
[7.6 3.0 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2.0]
[6.4 2.7 5.3 1.9]
[6.8 3.0 5.5 2.1]
[5.7 2.5 5.0 2.0]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3.0 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6.0 2.2 5.0 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2.0]
[7.7 2.8 6.7 2.0]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6.0 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3.0 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3.0 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2.0]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3.0 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6.0 3.0 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3.0 5.2 2.3]
[6.3 2.5 5.0 1.9]
[6.5 3.0 5.2 2.0]
[6.2 3.4 5.4 2.3]
[5.9 3.0 5.1 1.8]]
y = 
['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica'
'Iris-virginica' 'Iris-virginica' 'Iris-virginica']
['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']
Last Version, y = 
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2]
[[4.3        2.        ]
[4.30721443 2.        ]
[4.31442886 2.        ]
...
[7.88557114 4.4       ]
[7.89278557 4.4       ]
[7.9        4.4       ]]

进程已结束,退出代码0

http://www.dtcms.com/a/330984.html

相关文章:

  • AXI GPIO 2——ZYNQ学习笔记
  • 力扣top100(day03-02)--图论
  • Java 技术栈中间件优雅停机方案设计与实现全景图
  • 【JavaEE】多线程 -- 线程状态
  • 数据结构之顺序表相关算法题
  • 【数据分享】351个地级市农业相关数据(2013-2022)-有缺失值
  • linux中date命令
  • SAP-ABAP:SAP消息系统深度解析:架构设计与企业级应用实践
  • Wireshark中捕获的大量UDP数据
  • 23.Linux : ftp服务及配置详解
  • (论文速读)DiffusionDet - 扩散模型在目标检测中的开创性应用
  • AI搜索重构下的GEO优化服务商格局观察
  • 李沐-第六章-LeNet训练中的pycharm jupyter-notebook Animator类的显示问题
  • 轻松同步 Outlook 联系人到 Android
  • 深入解析SAE自动驾驶分级标准(0-5级)及典型落地实例
  • Ubuntu 软件源版本不匹配导致的依赖冲突问题及解决方法
  • C++ 23种设计模式的分类总结
  • C++23输出革命:std::print的崛起与工业界标准滞后的现实困境
  • 18.12 BERT问答系统核心难题:3步攻克Tokenizer答案定位与动态填充实战
  • c/c++ UNIX 域Socket和共享内存实现本机通信
  • 2021睿抗决赛 猛犸不上 Ban
  • diffusers库学习--pipeline,模型,调度器的基础使用
  • 深入解析Prompt缓存机制:原理、优化与实践经验
  • Centos9傻瓜式linux部署CRMEB 开源商城系统(PHP)
  • 流式数据服务端怎么传给前端,前端怎么接收?
  • Keil 微库(MicroLib)深度解析
  • USB 3.0 协议层 包定义
  • 微软对传统网页设计工具在2010年停止开发
  • Sql server 命令行和控制台使用二三事
  • web网站开发,在线%射击比赛成绩管理%系统开发demo,基于html,css,jquery,python,django,model,orm,mysql数据库