针对不同文本长度的处理方案,结合层次化编码和检索优化策略
- 直接上代码+注释
- 有意尝试可交流
- 效果正在验证中。
###1.短文本处理(<500tokens)
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2') # 384维小型模型
def process_short(text):
"""直接全文本编码"""
return model.encode(text, convert_to_tensor=True)
# 示例
short_text = "自然语言处理的基础概念" # 长度约15 tokens
vector = process_short(short_text)
2. 中长文本处理 (500-2000 tokens)
from langchain_text_splitters import RecursiveCharacterTextSplitter
def process_medium(text):
"""重叠分块策略"""
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", "。", "!", "?"]
)
chunks = splitter.split_text(text)
return [model.encode(chunk) for chunk in chunks]
# 示例
medium_text = "机器学习发展历史...(约1500字)" # 约1800 tokens
chunk_vectors = process_medium(medium_text)
3. 长文本处理 (2000-20000 tokens)
import spacy
def process_long(text):
"""语义分块+摘要增强"""
# 加载语义分割模型
nlp = spacy.load("zh_core_web_sm")
doc = nlp(text)
# 按段落分割
chunks = [sent.text for sent in doc.sents]
# 生成章节摘要
summary_model = SentenceTransformer('uer/sbert-base-chinese-nli')
summaries = [summary_model.encode(chunk[:200]) for chunk in chunks]
return chunks, summaries
# 示例
long_text = "人工智能技术白皮书...(约2万字)" # 约20000 tokens
text_chunks, summary_vecs = process_long(long_text)
4. 超长文本处理 (20000-200000 tokens)
import faiss
import numpy as np
class HierarchicalIndex:
def __init__(self):
# 两级索引结构
self.summary_index = faiss.IndexFlatL2(384)
self.chunk_index = faiss.IndexIVFPQ(
faiss.IndexFlatL2(384), 384, 100, 16, 8
)
self.metadata = []
def add_document(self, text):
# 生成段落级摘要
chunks, summaries = process_long(text)
# 构建索引
summary_vecs = np.array(summaries).astype('float32')
chunk_vecs = np.array([model.encode(c) for c in chunks]).astype('float32')
self.summary_index.add(summary_vecs)
self.chunk_index.add(chunk_vecs)
self.metadata.extend(chunks)
def search(self, query, k=5):
# 先检索摘要层
query_vec = model.encode(query).astype('float32')
_, sum_indices = self.summary_index.search(np.array([query_vec]), 10)
# 精搜相关块
target_chunks = [self.chunk_index.reconstruct(i) for i in sum_indices]
target_chunks = np.array(target_chunks).astype('float32')
_, chunk_indices = self.chunk_index.search(target_chunks, k)
return [self.metadata[i] for i in chunk_indices]
# 使用示例
hindex = HierarchicalIndex()
hindex.add_document("某领域技术文档...(约15万字)") # 约200000 tokens
results = hindex.search("深度学习在医疗影像的应用")
5. 海量文本处理 (>200000 tokens)
import dask.dataframe as dd
from dask.distributed import Client
def process_extreme(file_path):
"""分布式处理方案"""
client = Client(n_workers=4) # 启动Dask集群
# 分块读取
df = dd.read_parquet(file_path, chunksize=100000)
# 并行编码
df['vector'] = df['text'].map_partitions(
lambda s: s.apply(model.encode),
meta=('vector', object)
)
# 构建分布式索引
df.to_parquet("encoded_data.parquet", engine="pyarrow")
# 示例(处理100万条文本)
process_extreme("massive_data.parquet")
性能优化对照表
文本长度 | 处理策略 | 索引类型 | 响应时间 | 内存消耗 |
---|---|---|---|---|
<500 | 直接编码 | FlatIndex | <10ms | 1MB |
2000 | 重叠分块 | IVF+PQ | 50-100ms | 50MB |
20000 | 语义分块+摘要索引 | 二级索引 | 200-500ms | 300MB |
200000 | 层次化索引 | IVFOPQ+ProductQuant | 1-2s | 2GB |
>200000 | 分布式处理 | 分片索引 | 10s+ | 集群资源 |
关键处理技术
- 滑动窗口:通过
chunk_overlap
保留上下文连续性 - 语义分块:使用spacy进行句子边界检测
- 层次化索引:摘要层加速粗筛,块层保证精度
- 量化压缩:PQ算法减少内存占用(精度损失