当前位置: 首页 > news >正文

多源 BFS 算法详解:从原理到实现,高效解决多源最短路问题

        多源 BFS 是一种解决 边权为 1 的多源最短路问题 的高效算法。其核心思想是将所有源点视为一个“超级源点”,通过一次 BFS 遍历即可计算所有节点到最近源点的最短距离。以下从原理、实现和代码示例三个方面深入讲解:


目录

一、原理分析

1. 单源 BFS vs 多源 BFS

2. 正确性证明

3. 时间复杂度

二、C++ 实现步骤

1. 初始化

2. BFS 扩展

三、代码示例

四、代码解释

初始化阶段

BFS 扩展阶段

五、应用场景

六、注意事项


一、原理分析

1. 单源 BFS vs 多源 BFS

  • 单源 BFS:从单一源点出发,逐层扩展,记录每个节点到该源点的最短距离。

  • 多源 BFS:将多个源点 同时加入队列,作为 BFS 的初始层。每个节点被首次访问时,记录的是到最近源点的最短距离。

2. 正确性证明

  • BFS 的逐层扩展特性保证:当某个节点被首次访问时,其路径长度即为最短距离。

  • 所有源点同时作为初始层,相当于它们处于“第 0 层”,后续扩展的层数即为到最近源点的距离。

3. 时间复杂度

  • 与单源 BFS 相同,时间复杂度为 O(N)(假设共 N 个节点),每个节点和边仅被处理一次。


二、C++ 实现步骤

以二维网格为例,假设 grid 表示网格,其中 1 为源点,0 为可通行节点。目标是计算每个节点到最近源点的距离。

1. 初始化

  • 队列:将所有源点坐标加入队列。

  • 距离数组:源点距离初始化为 0,其他节点初始化为 -1(表示未访问)。

2. BFS 扩展

  • 从队列中取出节点,检查其四个方向(上、下、左、右)。

  • 若相邻节点未被访问过,更新其距离并加入队列。


三、代码示例

#include <vector>
#include <queue>
using namespace std;

vector<vector<int>> multiSourceBFS(vector<vector<int>>& grid) {
    int rows = grid.size();
    int cols = grid[0].size();
    queue<pair<int, int>> q;
    vector<vector<int>> dist(rows, vector<int>(cols, -1));

    // 初始化:将所有源点加入队列,并设置距离为 0
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            if (grid[i][j] == 1) {
                q.push({i, j});
                dist[i][j] = 0;
            }
        }
    }

    // 四个移动方向:上、下、左、右
    vector<pair<int, int>> dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};

    while (!q.empty()) {
        auto [x, y] = q.front();
        q.pop();

        for (auto [dx, dy] : dirs) {
            int nx = x + dx;
            int ny = y + dy;

            // 检查边界和是否已访问
            if (nx >= 0 && nx < rows && ny >= 0 && ny < cols && dist[nx][ny] == -1) {
                dist[nx][ny] = dist[x][y] + 1;
                q.push({nx, ny});
            }
        }
    }

    return dist;
}

四、代码解释

  1. 初始化阶段

    • 遍历网格,将所有源点(值为 1)的坐标加入队列,并设置其距离为 0

    • 其他节点的距离初始化为 -1,表示未访问。

  2. BFS 扩展阶段

    • 从队列中取出节点,检查四个方向的相邻节点。

    • 若相邻节点在网格内且未被访问,更新其距离为当前节点距离 +1,并将其加入队列。


五、应用场景

  • 计算多个起点到所有节点的最短距离(如疫情传播模拟、火源蔓延模型)。

  • 地图中多个商店到用户的最短路径计算。


六、注意事项

  1. 边权必须为 1:若边权不同,需使用 Dijkstra 或 Floyd-Warshall 算法。

  2. 空间优化:可直接在原数组上修改距离,避免额外空间开销。

  3. 性能优势:相比暴力法(每个源点单独 BFS),时间复杂度从 O(kN) 优化到 O(N),其中 k 是源点数量。

        通过多源 BFS,我们能够以高效的方式解决多个起点同时扩散的最短路径问题,是图论中一种重要的优化技巧。

相关文章:

  • Andorid 学习 Compose UI(1):Box
  • sql function can not excute on QE slice 解决方案
  • 爬虫小案例豆瓣电影top250(json格式)
  • 如何将公钥正确添加到服务器的 authorized_keys 文件中以实现免密码 SSH 登录
  • 目标检测数据集-水果腐烂新鲜度检测数据集(适用YOLO全系列)
  • JavaScript函数-函数的参数
  • SQL表结构详解
  • ssh与服务器
  • 【AD】3-5 元件在原理图中的基本操作1
  • uniapp小程序自定义日历(签到、补签功能)
  • 《深度学习实战》第1集:深度学习基础回顾与框架选择
  • C++如何获取windows系统通知消息列表
  • 数据结构系列三:List+顺序表+ArrayList
  • langflow如何查看中间步骤的输出
  • 嵌入式硬件篇---数字电子技术中的时序逻辑
  • Unable to parse timestamp value: “20250220135445“, expected format is
  • Elasticsearch除了用作查找以外,还能可以做什么?
  • DAY08 List接口、Collections接口、Set接口
  • const 关键字在 C++ 中的应用
  • Cannot deserialize instance of java.lang.String out of START_ARRAY token
  • 庆祝上海总工会成立100周年暨市模范集体劳动模范和先进工作者表彰大会举行,陈吉宁寄予这些期待
  • 上海发布首份直播电商行业自律公约,禁止虚假宣传、商业诋毁
  • 西安机场回应航站楼“水帘洞”事件:屋面排水系统被冰雹堵塞
  • 代理销售保险存在误导行为,农业银行重庆市分行相关负责人被罚款0.1万元
  • 晶圆销量上升,中芯国际一季度营收增长近三成,净利增超1.6倍
  • 北约年度报告渲染所谓“中国核威胁”,国防部回应