stm32/gd32驱动DAC8830
文章目录
- DAC8830介绍
- 特性
- 功能框图
- 绝对最大额定值
- PIN 配置
- 时序图
- 原理图
- 硬件连接
- 主控芯片
- stm32ret6
- gd32f103ret6
- GD兆易GD32系列MCU替换ST芯片对照表
- 参考电压 MAX6225B
- 接线
- 手册
- 单极码
- 软件实现
- cubemx配置
- 代码
DAC8830介绍
特性
- 16位分辨率
- 2.7V至5.5V单电源供电
- 极低功耗:3V供电时为15μW
- 高精度,积分非线性(INL):1 LSB
- 低噪声:10 nV/√Hz
- 快速建立时间:1.0μS
- 高速SPI™接口,最高可达50MHz
- 复位至零代码
- 施密特触发器输入,用于直接光耦合器接口
- 工业标准引脚配置
功能框图

绝对最大额定值
在工作自由空气温度范围内(除非另有说明)(1)
| 参数 | DAC8830、DAC8831 | 单位 |
|---|---|---|
| VDDV_{\text{DD}}VDD 至 AGND | −0.3-0.3−0.3 至 +7+7+7 | V |
| 数字输入电压至 DGND | −0.3-0.3−0.3 至 +VDD+0.3+V_{\text{DD}} + 0.3+VDD+0.3 | V |
| VOUTV_{\text{OUT}}VOUT 至 AGND | −0.3-0.3−0.3 至 +VDD+0.3+V_{\text{DD}} + 0.3+VDD+0.3 | V |
| AGND、AGNDF、AGNDS 至 DGND | −0.3-0.3−0.3 至 +0.3+0.3+0.3 | V |
| 工作温度范围 | −40-40−40 至 +85+85+85 | ∘C^\circ\text{C}∘C |
| 存储温度范围 | −65-65−65 至 +150+150+150 | ∘C^\circ\text{C}∘C |
| 结温范围(TJ maxT_{\text{J max}}TJ max) | +150+150+150 | ∘C^\circ\text{C}∘C |
| 功耗 | (TJ max−TA)/θJA(T_{\text{J max}} - T_{\text{A}}) / \theta_{\text{JA}}(TJ max−TA)/θJA | W |
| 热阻,θJA\theta_{\text{JA}}θJA - QFN-14 | 54.954.954.9 | ∘C/W^\circ\text{C/W}∘C/W |
| 热阻,θJA\theta_{\text{JA}}θJA - SO-8 | 136.9136.9136.9 | ∘C/W^\circ\text{C/W}∘C/W |
| 热阻,θJA\theta_{\text{JA}}θJA - SO-14 | 66.666.666.6 | ∘C/W^\circ\text{C/W}∘C/W |
(1) 超过“绝对最大额定值”中所列的应力可能会对器件造成永久性损坏。长时间暴露在绝对最大条件下可能会影响器件的可靠性。
PIN 配置

| 引脚编号 | 引脚名称 | 功能描述 |
|---|---|---|
| 1 | VOUTV_{\text{OUT}}VOUT | 数模转换器(DAC)的模拟输出 |
| 2 | AGND | 模拟地 |
| 3 | VREFV_{\text{REF}}VREF | 电压基准输入 |
| 4 | CS‾\overline{\text{CS}}CS | 芯片选择输入(低电平有效)。除非 CS‾\overline{\text{CS}}CS 为低电平,否则数据不会被锁存到串行数据输入(SDI) |
| 5 | SCLK | 串行时钟输入 |
| 6 | SDI | 串行数据输入。在串行时钟(SCLK)的上升沿,数据被锁存到输入寄存器 |
| 7 | DGND | 数字地 |
| 8 | VDD | 模拟电源,3V 至 5V |
时序图

DAC8830的SPI时序图如图所示,可以看到这个模块是高位先行,16位收发,CS拉低时进行通讯。
原理图

硬件连接
- SCLK → PB13 (SPI2_SCK)
- SDI → PB15 (SPI2_MOSI)
- CS → PC11 (GPIO 手动控制)
- VREF → 参考电压(如 2.5V 或 3.3V)
- GND → 共地
主控芯片
stm32ret6


gd32f103ret6



尝试用stm32的HAL库驱动
GD兆易GD32系列MCU替换ST芯片对照表
https://www.pcbcopy.com/2018/jishu_0827/1994.html
参考电压 MAX6225B
使用MAX6225B,通过查阅手册得知,输出电压是2.5V
接线

手册

单极码

软件实现
cubemx配置

代码
//dac8830.h
#ifndef __DAC8830_H
#define __DAC8830_H#include "stm32f1xx_hal.h"/* DAC8830引脚定义 */
#define DAC8830_SCLK_PIN GPIO_PIN_13
#define DAC8830_SCLK_PORT GPIOB
#define DAC8830_SDI_PIN GPIO_PIN_15
#define DAC8830_SDI_PORT GPIOB
#define DAC8830_CS_PIN GPIO_PIN_11
#define DAC8830_CS_PORT GPIOC/* 函数声明 */
void DAC8830_Init(void);
void DAC8830_WriteData(uint16_t data);
void DAC8830_SetVoltage(float voltage);
void DAC8830_SetOutput(uint16_t value);
void DAC8830_PowerDown(void);
void DAC8830_PowerUp(void);#endif /* __DAC8830_H */
//dac8830.c
#include "dac8830.h"
#include "spi.h"/* 外部变量声明 */
extern SPI_HandleTypeDef hspi2;/*** @brief DAC8830初始化函数* @param None* @retval None* @note 初始化DAC8830,设置CS引脚为高电平,使DAC处于待机状态*/
void DAC8830_Init(void)
{/* CS引脚初始化为高电平,使DAC处于非选中状态 */HAL_GPIO_WritePin(DAC8830_CS_PORT, DAC8830_CS_PIN, GPIO_PIN_SET);/* 延时一段时间确保DAC稳定 */HAL_Delay(10);/* 输出0V,初始化DAC输出 */DAC8830_SetOutput(0);
}/*** @brief 向DAC8830写入16位数据* @param data: 16位数据值 (0-65535)* @retval None* @note DAC8830是16位DAC,数据范围为0-65535* 数据格式:MSB优先,16位数据直接传输*/
void DAC8830_WriteData(uint16_t data)
{uint8_t txData[2];/* 将16位数据分成两个8位字节,高字节在前 */txData[0] = (data >> 8) & 0xFF; // 高8位txData[1] = data & 0xFF; // 低8位/* CS拉低,选中DAC */HAL_GPIO_WritePin(DAC8830_CS_PORT, DAC8830_CS_PIN, GPIO_PIN_RESET);/* 通过SPI发送数据 */HAL_SPI_Transmit(&hspi2, txData, 2, 100);/* CS拉高,结束传输 */HAL_GPIO_WritePin(DAC8830_CS_PORT, DAC8830_CS_PIN, GPIO_PIN_SET);
}/*** @brief 设置DAC输出电压* @param voltage: 电压值 (0.0V - 参考电压)* @retval None* @note 根据参考电压计算对应的数字值* 参考电压设置为2.5V*/
void DAC8830_SetVoltage(float voltage)
{uint16_t dacValue;float refVoltage = 2.5f; // 参考电压/* 限制电压范围 */if (voltage < 0.0f) {voltage = 0.0f;} else if (voltage > refVoltage) {voltage = refVoltage;}/* 计算DAC值:电压/参考电压 * 65535 */dacValue = (uint16_t)((voltage / refVoltage) * 65535.0f);/* 写入DAC */DAC8830_WriteData(dacValue);
}/*** @brief 设置DAC输出数字值* @param value: 16位数字值 (0-65535)* @retval None* @note 直接设置DAC的数字输出值*/
void DAC8830_SetOutput(uint16_t value)
{/* 限制数值范围 */if (value > 65535) {value = 65535;}/* 写入DAC */DAC8830_WriteData(value);
}/*** @brief DAC8830掉电模式* @param None* @retval None* @note 使DAC进入低功耗模式或输出0V*/
void DAC8830_PowerDown(void)
{/* 方案1:输出0V(当前实现) */DAC8830_SetOutput(0);/* 方案2:如果DAC8830支持真正的掉电模式 *//* uint16_t powerDownCommand = 0x8000; // 掉电命令 *//* DAC8830_WriteData(powerDownCommand); *//* 延时确保输出稳定 */HAL_Delay(1);
}/*** @brief DAC8830唤醒* @param None* @retval None* @note 从掉电模式唤醒DAC或重新初始化*/
void DAC8830_PowerUp(void)
{/* 方案1:如果之前是输出0V,现在可以重新设置输出 *//* 这里只是延时,实际唤醒需要重新设置输出值 *//* 方案2:如果DAC8830支持真正的掉电模式 *//* uint16_t normalCommand = 0x0000; // 正常工作命令 *//* DAC8830_WriteData(normalCommand); *//* 延时确保DAC稳定 */HAL_Delay(10);
}
\\main.c
/* USER CODE BEGIN Header */
/********************************************************************************* @file : main.c* @brief : Main program body******************************************************************************* @attention** Copyright (c) 2025 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "spi.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
#include "dac8830.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 *//* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_SPI2_Init();/* USER CODE BEGIN 2 *//* 初始化DAC8830 */DAC8830_Init();char message[]="DAC8830 Test";/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* DAC8830测试程序 - 输出直流电压 */HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_RESET); // 485 CON=0/* 输出1.25V (2.5V的一半) */DAC8830_SetVoltage(1.25f);HAL_UART_Transmit(&huart1,(uint8_t*)"DAC Output: 1.25V\r\n",20,100);HAL_Delay(2000);/* 输出2.5V (最大电压) */DAC8830_SetVoltage(2.5f);HAL_UART_Transmit(&huart1,(uint8_t*)"DAC Output: 2.5V\r\n",20,100);HAL_Delay(2000);/* 输出0V */DAC8830_SetVoltage(0.0f);HAL_UART_Transmit(&huart1,(uint8_t*)"DAC Output: 0V\r\n",18,100);HAL_Delay(2000);/* 也可以直接设置数字值 */DAC8830_SetOutput(32768); // 输出1.25V (65535的一半)HAL_UART_Transmit(&huart1,(uint8_t*)"DAC Digital: 32768\r\n",22,100);HAL_Delay(2000);HAL_GPIO_WritePin(GPIOC, GPIO_PIN_9, GPIO_PIN_SET); // 485 CON=1/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
