unsloth - LLM超级轻量级微调框架
1 功能特色
unsloth将大模型微调速度提升 2 倍,同时将显存(VRAM)占用降低 70% 以上。
1)手写Triton 内核和高效内存管理,单张12GB-24GB显存GPU上高效地进行Lora实验。
2)适合预算有限的小团队,普通硬件上快速迭代 LoRA 实验的研究者。
3)支持Deepseek、Qwen等大部分的流行的LLM
2 支持模型
unsloth支持模型,包括qwen3、kimi K1、deepseek v3、deepseek r1等。
https://docs.unsloth.ai/get-started/all-our-models
3 微调示例
unsloth微调示例
from unsloth import FastLanguageModel, FastModel
import torch
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
max_seq_length = 2048 # Supports RoPE Scaling internally, so choose any!
# Get LAION dataset
url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl"
dataset = load_dataset("json", data_files = {"train" : url}, split = "train")# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = ["unsloth/Meta-Llama-3.1-8B-bnb-4bit", # Llama-3.1 2x faster"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit","unsloth/Meta-Llama-3.1-70B-bnb-4bit","unsloth/Meta-Llama-3.1-405B-bnb-4bit", # 4bit for 405b!"unsloth/Mistral-Small-Instruct-2409", # Mistral 22b 2x faster!"unsloth/mistral-7b-instruct-v0.3-bnb-4bit","unsloth/Phi-3.5-mini-instruct", # Phi-3.5 2x faster!"unsloth/Phi-3-medium-4k-instruct","unsloth/gemma-2-9b-bnb-4bit","unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!"unsloth/Llama-3.2-1B-bnb-4bit", # NEW! Llama 3.2 models"unsloth/Llama-3.2-1B-Instruct-bnb-4bit","unsloth/Llama-3.2-3B-bnb-4bit","unsloth/Llama-3.2-3B-Instruct-bnb-4bit","unsloth/Llama-3.3-70B-Instruct-bnb-4bit" # NEW! Llama 3.3 70B!
] # More models at https://huggingface.co/unslothmodel, tokenizer = FastModel.from_pretrained(model_name = "unsloth/gemma-3-4B-it",max_seq_length = 2048, # Choose any for long context!load_in_4bit = True, # 4 bit quantization to reduce memoryload_in_8bit = False, # [NEW!] A bit more accurate, uses 2x memoryfull_finetuning = False, # [NEW!] We have full finetuning now!# token = "hf_...", # use one if using gated models
)# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(model,r = 16,target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],lora_alpha = 16,lora_dropout = 0, # Supports any, but = 0 is optimizedbias = "none", # Supports any, but = "none" is optimized# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long contextrandom_state = 3407,max_seq_length = max_seq_length,use_rslora = False, # We support rank stabilized LoRAloftq_config = None, # And LoftQ
)trainer = SFTTrainer(model = model,train_dataset = dataset,tokenizer = tokenizer,args = SFTConfig(max_seq_length = max_seq_length,per_device_train_batch_size = 2,gradient_accumulation_steps = 4,warmup_steps = 10,max_steps = 60,logging_steps = 1,output_dir = "outputs",optim = "adamw_8bit",seed = 3407,),
)
trainer.train()# Go to https://github.com/unslothai/unsloth/wiki for advanced tips like
# (1) Saving to GGUF / merging to 16bit for vLLM
# (2) Continued training from a saved LoRA adapter
# (3) Adding an evaluation loop / OOMs
# (4) Customized chat templates
unsloth colab示例
https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
reference
---
unsloth
https://github.com/unslothai/unsloth
unsloth doc
https://docs.unsloth.ai/