当前位置: 首页 > news >正文

动态规划Day7学习心得

今天给动态规划扫个尾,还有两题。

第一道:647. 回文子串 - 力扣(LeetCode)

暴力解法

两层for循环,遍历区间起始位置和终止位置,然后还需要一层遍历判断这个区间是不是回文。所以时间复杂度:O(n^3)。

动态规划

动规五部曲:

确定dp数组(dp table)以及下标的含义

本题如果定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,会发现很难找到递归关系。

dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。

在判断字符串S是否是回文,那么如果知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时是不是能找到一种递归关系,也就是判断一个子字符串(字符串下标范围[i,j])是否回文,依赖于,子字符串(下标范围[i + 1, j - 1])) 是否是回文。

所以为了明确这种递归关系,dp数组要定义成一位二维dp数组。

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}
}

result就是统计回文子串的数量。

注意这里没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

dp数组如何初始化

dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

确定遍历顺序
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角。

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

C++代码如下:

class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}}return result;}
};

然后看第二道:516. 最长回文子序列 - 力扣(LeetCode)

回文子串是要连续的,回文子序列可不是连续的!

动规五部曲分析如下:

确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

代码如下:

if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;
} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;

确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

C++代码如下:

class Solution {
public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));for (int i = 0; i < s.size(); i++) dp[i][i] = 1;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}}return dp[0][s.size() - 1];}
};

http://www.dtcms.com/a/311828.html

相关文章:

  • 深入理解Linux线程:从概念到控制的最佳实践
  • jenkins从入门到精通-P1—九五小庞
  • Python编程基础与实践:Python函数编程入门
  • 基于Redis自动过期的流处理暂停机制
  • day38 力扣279.完全平方数 力扣322. 零钱兑换 力扣139.单词拆分
  • 位运算-371.两整数之和-力扣(LeetCode)
  • 2 安装 Docker 和 Jenkins:持续构建环境起步
  • Chisel芯片开发入门系列 -- 17. CPU芯片开发和解释7(5级流水线指令原理)
  • 洛谷 P3372 【模板】线段树 1-普及+/提高
  • 【AI学习】RadioDiff:代码学习
  • Paper Reading《TrafficFormer: An Efficient Pre-trained Model for Traffic Data》
  • 【MQ】kafka同步和异步的区别
  • Windows中使用Qwen模型:VSCode+Cline
  • 64GB U盘实际显示容量为57.2GB的原因解析
  • innoDB的buffer pool
  • Wasatch SoftRIP数码打印 印花软件
  • 谷歌开源Agent框架ADK快速入门
  • 深入理解 Go 语言中 Map 的底层原理
  • Python爬虫实战:研究SimpleCV技术,构建图像获取及处理系统
  • Apache Doris数据库——大数据技术
  • 【LeetCode刷题指南】--二叉树的前序遍历,二叉树的中序遍历
  • MCP Agent 工程框架Dify初探
  • pytorch简单理解
  • 我的世界之战争星球 暮色苍茫篇 第二十六章、身世
  • 分布在内侧内嗅皮层的层Ⅱ或层Ⅲ的头部方向细胞(head direction cells)对NLP中的深层语义分析的积极影响和启示
  • JVM中年轻代、老年代、永久代(或元空间)、Eden区和Survivor区概念介绍
  • Mysql insert 语句
  • 入门MicroPython+ESP32:开启科技新旅程
  • 机试备考笔记 2/31
  • FastAPI--一个快速的 Python Web