力扣 hot100 Day58
完成了这些题目,都是回溯题目,思路比较统一,懒得一一贴代码了,反正是记录向而非教学向
class Solution {
private:vector<vector<int>>result;vector<int> path;public:void backtracking(vector<int>& nums,int index){result.push_back(path);for(int i=index;i<nums.size();i++){path.push_back(nums[i]);backtracking(nums,i+1);path.pop_back();}}vector<vector<int>> subsets(vector<int>& nums) {int index = 0;backtracking(nums,index);return result;}
};
这是子集的求解代码,用于返回给定数组所有可能的子集
大致思路就是,在每一层backtracking函数中,再用for循环递归多个backtracking,这些层其实就类似于实现多层for循环遍历了。
这里的子集需要考虑顺序,所以加入参数index,在for循环中应用
class Solution {
private:vector<string> res;string path;
public:void backtracking(int n,int left,int right){if(left==right&&left==n){res.push_back(path);return;}if(left<n){path.push_back('(');backtracking(n,left+1,right);path.pop_back();}if(right<left){path.push_back(')');backtracking(n,left,right+1);path.pop_back();}}vector<string> generateParenthesis(int n) {backtracking(n,0,0);return res;}
};
这个代码用于返回n对括号所有可能组合
不同于for循环,这里只是简单进行条件判断,当左括号数小于n时,可以加入左括号,当右括号数小于左括号数时,可以加入右括号
class Solution {
private:vector<vector<string>> result;void backtracking(int n, int row, vector<string>& chessboard) {if (row == n) {result.push_back(chessboard);return;}for (int col = 0; col < n; col++) {if (isValid(row, col, chessboard, n)) {chessboard[row][col] = 'Q';backtracking(n, row + 1, chessboard);chessboard[row][col] = '.';}}}bool isValid(int row, int col, vector<string>& chessboard, int n) {for (int i = 0; i < row; i++) {if (chessboard[i][col] == 'Q') {return false;}}for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {if (chessboard[i][j] == 'Q') {return false;}}for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {if (chessboard[i][j] == 'Q') {return false;}}return true;}
public:vector<vector<string>> solveNQueens(int n) {result.clear();vector<string> chessboard(n, string(n, '.'));backtracking(n, 0, chessboard);return result;}
};
这是n皇后的代码,返回n*n的矩阵中不能同行同列同斜线的皇后数
这里将棋盘的宽度设为for循环的长度,递归的深度就是棋盘的高度,相当于从第一行开始,一行放一个皇后,遍历所有可能,进行递归判断
其它都大差不差,可以多回顾看看