MGRE 实验
一.实验拓扑
二.实验要求
1.按照图示配置IP地址
2.配置静态路由协议,搞通公网
3.配置MGRE VPN
4.NHRP的配置
5.配置OSPF路由协议来传递两端私网路由
6.测试全网通
三.实验配置
1.配置ip地址
R1
[R1]int g0/0/0
[R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24
[R1]int LoopBack 0
[R1-LoopBack0]ip address 192.168.1.1 24
R2
[R2]int g0/0/0
[R2-GigabitEthernet0/0/0]ip add
[R2-GigabitEthernet0/0/0]ip address 25.0.0.2 24
[R2]int LoopBack 0
[R2-LoopBack0]ip address 192.168.2.2 24
R3
[R3]int g0/0/0
[R3-GigabitEthernet0/0/0]ip address 35.0.0.3 24
[R3-GigabitEthernet0/0/0]int l0
[R3-LoopBack0]ip address 192.168.3.3 24
R4
[R4]int g0/0/0
[R4-GigabitEthernet0/0/0]ip add 45.0.0.4 24
[R4-GigabitEthernet0/0/0]int l0
[R4-LoopBack0]ip add 192.168.4.4 24
R5
[R5]int g0/0/0
[R5-GigabitEthernet0/0/0]ip add 15.0.0.5 24
[R5-GigabitEthernet0/0/0]int g0/0/1
[R5-GigabitEthernet0/0/1]ip add 25.0.0.5 24
[R5-GigabitEthernet0/0/1]int g0/0/2
[R5-GigabitEthernet0/0/2]ip add 45.0.0.5 24
[R5-GigabitEthernet0/0/2]int g4/0/0
[R5-GigabitEthernet4/0/0]ip add 35.0.0.5 24
2.配置静态路由,搞通公网
[R1]ip route-static 0.0.0.0 0 15.0.0.5[R2]ip route-static 0.0.0.0 0 25.0.0.5[R3]ip route-static 0.0.0.0 0 35.0.0.5[R4]ip route-static 0.0.0.0 0 45.0.0.5
3.配置总部与分部之间的隧道-MGRE VPN
R1
[R1]int Tunnel 0/0/0
[R1-Tunnel0/0/0]ip add 192.168.5.1 24
[R1-Tunnel0/0/0]tunnel-protocol gre p2mp
[R1-Tunnel0/0/0]source 15.0.0.1
R2
[R2]int Tunnel 0/0/0
[R2-Tunnel0/0/0]ip add 192.168.5.2 24
[R2-Tunnel0/0/0]tunnel-protocol gre p2mp
[R2-Tunnel0/0/0]source GigabitEthernet 0/0/0
R3
[R3]int Tunnel 0/0/0
[R3-Tunnel0/0/0]ip add 192.168.5.3 24
[R3-Tunnel0/0/0]tunnel-protocol gre p2mp
[R3-Tunnel0/0/0]source GigabitEthernet 0/0/0
R4
[R4]int Tunnel 0/0/0
[R4-Tunnel0/0/0]ip address 192.168.5.4 24
[R4-Tunnel0/0/0]tunnel-protocol gre p2mp
[R4-Tunnel0/0/0]source GigabitEthernet 0/0/0
4.NHRP的配置
中心站点配置:
R1
[R1-Tunnel0/0/0]nhrp network-id 100
[R1-Tunnel0/0/0]nhrp entry multicast dynamic
分支站点配置:
R2
[R2]int Tunnel 0/0/0
[R2-Tunnel0/0/0]nhrp network-id 100
[R2-Tunnel0/0/0]nhrp entry 192.168.5.1 15.0.0.1 register
R3
[R3]int Tunnel 0/0/0
[R3-Tunnel0/0/0]nhrp network-id 100
[R3-Tunnel0/0/0]nhrp entry 192.168.5.1 15.0.0.1 register
R4
[R4]int Tunnel 0/0/0
[R4-Tunnel0/0/0]nhrp network-id 100
[R4-Tunnel0/0/0]nhrp entry 192.168.5.1 15.0.0.1 register
5.配置OSPF路由协议来传递两端私网路由
R1
[R1]ospf 1 router-id 1.1.1.1
[R1-ospf-1]area 0
[R1-ospf-1-area-0.0.0.0]network 192.168.1.0 0.0.0.255
[R1-ospf-1-area-0.0.0.0]network 192.168.5.0 0.0.0.255
R2
[R2]ospf 1 router-id 2.2.2.2
[R2-ospf-1]area 0
[R2-ospf-1-area-0.0.0.0]network 192.168.2.0 0.0.0.255
[R2-ospf-1-area-0.0.0.0]network 192.168.5.0 0.0.0.255
R3
[R3]ospf 1 router-id 3.3.3.3
[R3-ospf-1]area 0
[R3-ospf-1-area-0.0.0.0]ne
[R3-ospf-1-area-0.0.0.0]network 192.168.3.0 0.0.0.255
[R3-ospf-1-area-0.0.0.0]network 192.168.5.0 0.0.0.255
R4
[R4]ospf 1 router-id 4.4.4.4
[R4-ospf-1]area 0
[R4-ospf-1-area-0.0.0.0]network 192.168.4.0 0.0.0.255
[R4-ospf-1-area-0.0.0.0]network 192.168.5.0 0.0.0.255
[R4-ospf-1-area-0.0.0.0]
查看各个设备的OSPF路由表学习情况及邻居表,会发现ospf的路由表学习不全,设备也无法正常建立邻接关系
Tunnel接口类型为P2P类型,不选举DR/BDR,使得设备无法正常建立邻接关系,
解决方法:更改网络中tunnel接口类型为广播或者P2MP
[R1-Tunnel0/0/0]ospf network-type broadcast
[R2-Tunnel0/0/0]ospf network-type broadcast
[R3-Tunnel0/0/0]ospf network-type broadcast
[R4-Tunnel0/0/0]ospf network-type broadcast
DR和BDR选举混乱,无法正常建邻
更改网络类型后,广播网络中中心站点和分支站点处于同一个广播域,此时需要进行DR和BDR的选举,但是在分支站点的世界里只和中心站点认识,分支站点和分支站点不认识,这就会发生多个分支站点和一个中心站点互相竞选DR和BDR,这样会造成选举结果混乱,可在中心站点看到混乱的场景
解决方法:将分支站点的dr选举优先级变0,这样就能保证中心站点是整个广播网络中唯一的DR
[R2-Tunnel0/0/0]ospf dr-priority 0
[R3-Tunnel0/0/0]ospf dr-priority 0
[R4-Tunnel0/0/0]ospf dr-priority 0