MatterPort3D 数据集 | 简介 | 多途径下载
Matterport3D,简称MP3D,是室内场景的一个大规模 RGB-D 数据集。可用于机器人具身导航算法开发。
包含 90 个建筑规模场景的 194,400 张RGB-D图像,以及10,800个全景视图。
数据集提供了表面重建、相机姿态以及二维和三维语义分割的注释。
支持各种监督和自监督计算机视觉任务,包括关键点匹配、视图重叠预测、基于颜色的法线预测、语义分割和场景分类。
项目地址:https://niessner.github.io/Matterport/
代码地址:https://github.com/niessner/Matterport
论文地址:Matterport3D: Learning from RGB-D Data in Indoor Environments
1、数据集下载(官方)
该数据集包含多种类型的标注:彩色和深度图像、相机姿态、带纹理的 3D 网格、建筑平面图和区域标注、对象实例语义标注。
数据集的格式参考:https://github.com/niessner/Matterport/blob/master/data_organization.md
需要填写并签署使用条款协议表格,然后将其发送至matterport3d@googlegroups.com以请求访问数据集。
2、Habitat-Lab 提供示例下载
Scenes datasets 如下表格所示:
Scenes models | Extract path | Archive size |
---|---|---|
Habitat test scenes | data/scene_datasets/habitat-test-scenes/{scene}.glb | 89 MB |
ReplicaCAD | data/scene_datasets/replica_cad/configs/scenes/{scene}.scene_instance.json | 123 MB |
HM3D | data/scene_datasets/hm3d/{split}/00\d\d\d-{scene}/{scene}.basis.glb | 130 GB |
Gibson | data/scene_datasets/gibson/{scene}.glb | 1.5 GB |
MatterPort3D | data/scene_datasets/mp3d/{scene}/{scene}.glb | 15 GB |
HSSD-Habitat | data/scene_datasets/hssd-hab/scenes/{scene}.scene_instance.json | XXXXX GB |
AI2-THOR-Habitat | data/scene_datasets/ai2thor-hab/ai2thor-hab/configs/scenes/{DATASET}/{scene}.scene_instance.json | XXXXX GB |
点击“Matterport3D”后,能看到下载命令:
python -m habitat_sim.utils.datasets_download --uids mp3d_example_scene --data-path data/
但是这只是一个示例场景,用于在 Habitat-sim 中执行单元测试,无法下载完整的“Matterport3D”数据。
Task datasets 如下表格所示:
Task | Scenes | Link | Extract path | Config to use | Archive size |
---|---|---|---|---|---|
Rearrange Pick | ReplicaCAD | rearrange_pick_replica_cad_v0.zip | data/datasets/rearrange_pick/replica_cad/v0/ | datasets/rearrangepick/replica_cad.yaml | 11 MB |
Point goal navigation | Gibson | pointnav_gibson_v1.zip | data/datasets/pointnav/gibson/v1/ | datasets/pointnav/gibson.yaml | 385 MB |
Point goal navigation | Gibson 0+ (train) | pointnav_gibson_0_plus_v1.zip | data/datasets/pointnav/gibson/v1/ | datasets/pointnav/gibson_0_plus.yaml | 321 MB |
Point goal navigation corresponding to Sim2LoCoBot experiment configuration | Gibson | pointnav_gibson_v2.zip | data/datasets/pointnav/gibson/v2/ | datasets/pointnav/gibson_v2.yaml | 274 MB |
Point goal navigation | MatterPort3D | pointnav_mp3d_v1.zip | data/datasets/pointnav/mp3d/v1/ | datasets/pointnav/mp3d.yaml | 400 MB |
Point goal navigation | HM3D | pointnav_hm3d_v1.zip | data/datasets/pointnav/hm3d/v1/ | datasets/pointnav/hm3d.yaml | 992 MB |
Object goal navigation | MatterPort3D | objectnav_mp3d_v1.zip | data/datasets/objectnav/mp3d/v1/ | datasets/objectnav/mp3d.yaml | 170 MB |
Object goal navigation | HM3DSem-v0.1 | objectnav_hm3d_v1.zip | data/datasets/objectnav/hm3d/v1/ | datasets/objectnav/hm3d.yaml | 154 MB |
Object goal navigation | HM3DSem-v0.2 | objectnav_hm3d_v2.zip | data/datasets/objectnav/hm3d/v2/ | datasets/objectnav/hm3d_v2.yaml | 245 MB |
Object goal navigation | HSSD | objectnav_hssd_v0.2.3.zip | data/datasets/objectnav/hssd-hab | datasets/objectnav/hssd-hab.yaml | 206 MB |
Object goal navigation | ProcTHOR-hab | objectnav_procthor-hab.zip | data/datasets/objectnav/procthor-hab | datasets/objectnav/procthor-hab.yaml | 755 MB |
Embodied Question Answering | MatterPort3D | eqa_mp3d_v1.zip | data/datasets/eqa/mp3d/v1/ | datasets/eqa/mp3d.yaml | 44 MB |
Visual Language Navigation | MatterPort3D | vln_r2r_mp3d_v1.zip | data/datasets/vln/mp3d/r2r/v1 | datasets/vln/mp3d_r2r.yaml | 2.7 MB |
Instance image goal navigation | HM3DSem-v0.1 | instance_imagenav_hm3d_v1.zip | data/datasets/instance_imagenav/hm3d/v1/ | datasets/instance_imagenav/hm3d_v1.yaml | 303 MB |
Instance image goal navigation | HM3DSem-v0.2 | instance_imagenav_hm3d_v2.zip | data/datasets/instance_imagenav/hm3d/v2/ | datasets/instance_imagenav/hm3d_v2.yaml | 518 MB |
Instance image goal navigation | HM3DSem-v0.2 | instance_imagenav_hm3d_v3.zip | data/datasets/instance_imagenav/hm3d/v3/ | datasets/instance_imagenav/hm3d_v3.yaml | 517 MB |
Image goal navigation | Gibson | pointnav_gibson_v1.zip | data/datasets/pointnav/gibson/v1/ | datasets/imagenav/gibson.yaml | 385 MB |
Image goal navigation | MatterPort3D | pointnav_mp3d_v1.zip | data/datasets/pointnav/mp3d/v1/ | datasets/imagenav/mp3d.yaml | 400 MB |
3、批量下载
首先创建一个Conda环境,名字为mp3d,python版本为3.9
进入mp3d环境
conda create -n mp3d python=3.9
conda activate mp3d
然后安装requests依赖库
pip install requests
编写批量下载的代码:
#!/usr/bin/env python
# -*- coding: utf-8 -*-import argparse
import collections
import os
import tempfile
import urllib
from urllib import requestimport requests
from time import sleep
from requests.exceptions import ConnectionError, ChunkedEncodingError, RequestException
import sysBASE_URL = 'http://kaldir.vc.in.tum.de/matterport/'
RELEASE = 'v1/scans'
RELEASE_TASKS = 'v1/tasks/'
RELEASE_SIZE = '1.3TB'
TOS_URL = BASE_URL + 'MP_TOS.pdf'
FILETYPES = ['cameras','matterport_camera_intrinsics','matterport_camera_poses','matterport_color_images','matterport_depth_images','matterport_hdr_images','matterport_mesh','matterport_skybox_images','undistorted_camera_parameters','undistorted_color_images','undistorted_depth_images','undistorted_normal_images','house_segmentations','region_segmentations','image_overlap_data','poisson_meshes','sens'
]
TASK_FILES = {'keypoint_matching_data': ['keypoint_matching/data.zip'],'keypoint_matching_models': ['keypoint_matching/models.zip'],'surface_normal_data': ['surface_normal/data_list.zip'],'surface_normal_models': ['surface_normal/models.zip'],'region_classification_data': ['region_classification/data.zip'],'region_classification_models': ['region_classification/models.zip'],'semantic_voxel_label_data': ['semantic_voxel_label/data.zip'],'semantic_voxel_label_models': ['semantic_voxel_label/models.zip'],'minos': ['mp3d_minos.zip'],'gibson': ['mp3d_for_gibson.tar.gz'],'habitat': ['mp3d_habitat.zip'],'pixelsynth': ['mp3d_pixelsynth.zip'],'igibson': ['mp3d_for_igibson.zip'],'mp360': ['mp3d_360/data_00.zip', 'mp3d_360/data_01.zip', 'mp3d_360/data_02.zip', 'mp3d_360/data_03.zip', 'mp3d_360/data_04.zip', 'mp3d_360/data_05.zip', 'mp3d_360/data_06.zip']
}def get_release_scans(release_file):# scan_lines = urllib.urlopen(release_file)scan_lines = request.urlopen(release_file)scans = []for scan_line in scan_lines:scan_line = str(scan_line, 'utf-8')scan_id = scan_line.rstrip('\n')scans.append(scan_id)return scansdef download_release(release_scans, out_dir, file_types):print('Downloading MP release to ' + out_dir + '...')for scan_id in release_scans:scan_out_dir = os.path.join(out_dir, scan_id)download_scan(scan_id, scan_out_dir, file_types)print('Downloaded MP release.')def download_file(url, out_file, max_retries=5, chunk_size=1024*1024):"""下载单个文件,支持断点续传和自动重试,并打印实时下载进度。兼容 Python2/3。"""out_dir = os.path.dirname(out_file)if not os.path.isdir(out_dir):try:os.makedirs(out_dir)except OSError:pass# 获取文件总大小head = requests.head(url, allow_redirects=True)if head.status_code != 200:raise IOError("无法获取文件大小: {0},状态码 {1}".format(url, head.status_code))total_size = int(head.headers.get('Content-Length', 0))# 计算已下载起点resume = 0if os.path.exists(out_file):resume = os.path.getsize(out_file)if resume >= total_size:print("跳过已存在文件 %s" % out_file)returnprint("开始下载 %s (%0.2f MB)" % (out_file, total_size / 1024.0**2))retries = 0last_print = 0while resume < total_size and retries <= max_retries:headers = {"Range": "bytes=%d-%d" % (resume, total_size - 1)}try:r = requests.get(url, headers=headers, stream=True, timeout=30)r.raise_for_status()fh, tmp_path = tempfile.mkstemp(dir=out_dir)with os.fdopen(fh, "wb") as tmpf:for chunk in r.iter_content(chunk_size=chunk_size):if not chunk:continuetmpf.write(chunk)resume += len(chunk)# 每下载 5% 或最后一块时打印一次进度percent = int(resume * 100 / total_size)if percent - last_print >= 5 or resume == total_size:sys.stdout.write("\r下载进度: %3d%% (%0.2f/%0.2f MB)" % (percent,resume / 1024.0**2,total_size / 1024.0**2))sys.stdout.flush()last_print = percent# 将本次下载数据追加到目标文件with open(tmp_path, "rb") as tmpf, open(out_file, "ab") as outf:outf.write(tmpf.read())os.remove(tmp_path)r.close()break# except (requests.ConnectionError, requests.ChunkedEncodingError, IOError) as e:except (ConnectionError, ChunkedEncodingError, IOError) as e:retries += 1wait = 2 ** retriesprint("\n[重试 %d/%d] 已下载 %0.2f MB,等待 %d 秒后重试..." % (retries, max_retries,resume / 1024.0**2,wait))sleep(wait)if resume < total_size:raise IOError("下载失败:只获取到 %d / %d 字节" % (resume, total_size))# 下载完成后换行sys.stdout.write("\n下载完成:%s\n" % out_file)def download_scan(scan_id, out_dir, file_types):print('Downloading MP scan ' + scan_id + ' ...')if not os.path.isdir(out_dir):os.makedirs(out_dir)for ft in file_types:url = BASE_URL + RELEASE + '/' + scan_id + '/' + ft + '.zip'out_file = out_dir + '/' + ft + '.zip'download_file(url, out_file)print('Downloaded scan ' + scan_id)def download_task_data(task_data, out_dir):print('Downloading MP task data for ' + str(task_data) + ' ...')for task_data_id in task_data:if task_data_id in TASK_FILES:file = TASK_FILES[task_data_id]for filepart in file:url = BASE_URL + RELEASE_TASKS + '/' + filepartlocalpath = os.path.join(out_dir, filepart)localdir = os.path.dirname(localpath)if not os.path.isdir(localdir):os.makedirs(localdir)download_file(url, localpath)print('Downloaded task data ' + task_data_id)def main():parser = argparse.ArgumentParser(description='''Downloads MP public data release.Example invocation:python download_mp.py -o base_dir --id ALL --type object_segmentations --task_data semantic_voxel_label_data semantic_voxel_label_modelsThe -o argument is required and specifies the base_dir local directory.After download base_dir/v1/scans is populated with scan data, and base_dir/v1/tasks is populated with task data.Unzip scan files from base_dir/v1/scans and task files from base_dir/v1/tasks/task_name.The --type argument is optional (all data types are downloaded if unspecified).The --id ALL argument will download all house data. Use --id house_id to download specific house data.The --task_data argument is optional and will download task data and model files.''',formatter_class=argparse.RawTextHelpFormatter)parser.add_argument('-o', '--out_dir', required=True, help='directory in which to download')parser.add_argument('--task_data', default=[], nargs='+', help='task data files to download. Any of: ' + ','.join(TASK_FILES.keys()))parser.add_argument('--id', default='ALL', help='specific scan id to download or ALL to download entire dataset')parser.add_argument('--type', nargs='+', help='specific file types to download. Any of: ' + ','.join(FILETYPES))args = parser.parse_args()release_file = BASE_URL + RELEASE + '.txt'release_scans = get_release_scans(release_file)file_types = FILETYPES# download task dataif args.task_data:if set(args.task_data) & set(TASK_FILES.keys()): # download task dataout_dir = os.path.join(args.out_dir, RELEASE_TASKS)download_task_data(args.task_data, out_dir)else:print('ERROR: Unrecognized task data id: ' + args.task_data)print('Done downloading task_data for ' + str(args.task_data))# key = raw_input('Press any key to continue on to main dataset download, or CTRL-C to exit.')key = input('Press any key to continue on to main dataset download, or CTRL-C to exit.')# download specific file types?if args.type:if not set(args.type) & set(FILETYPES):# print('ERROR: Invalid file type: ' + file_type)print('ERROR: Invalid file type: ' + file_types)returnfile_types = args.typeif args.id and args.id != 'ALL': # download single scanscan_id = args.idif scan_id not in release_scans:print('ERROR: Invalid scan id: ' + scan_id)else:out_dir = os.path.join(args.out_dir, RELEASE, scan_id)download_scan(scan_id, out_dir, file_types)elif 'minos' not in args.task_data and args.id == 'ALL' or args.id == 'all': # download entire releaseif len(file_types) == len(FILETYPES):print('WARNING: You are downloading the entire MP release which requires ' + RELEASE_SIZE + ' of space.')else:print('WARNING: You are downloading all MP scans of type ' + file_types[0])print('Note that existing scan directories will be skipped. Delete partially downloaded directories to re-download.')print('***')print('Press any key to continue, or CTRL-C to exit.')# key = raw_input('')key = input('')out_dir = os.path.join(args.out_dir, RELEASE)download_release(release_scans, out_dir, file_types)if __name__ == "__main__": main()
创建一个文件夹,用于存放数据集,比如data
下载所以MP3D的数据,1.3T左右,执行命令:
python download_mp.py --task habitat -o ./data
打印信息:
Downloading MP task data for ['habitat'] ...
Done downloading task_data for ['habitat']
Press any key to continue on to main dataset download, or CTRL-C to exit.
WARNING: You are downloading the entire MP release which requires 1.3TB of space.
Note that existing scan directories will be skipped. Delete partially downloaded directories to re-download.
***
Press any key to continue, or CTRL-C to exit.Downloading MP release to ./data/v1/scans...
Downloading MP scan 1pXnuDYAj8r ...
下载完成:./data/v1/scans/1pXnuDYAj8r/cameras.zip
开始下载 ./data/v1/scans/1pXnuDYAj8r/matterport_camera_intrinsics.zip (0.10 MB)
下载进度: 100% (0.10/0.10 MB)
下载完成:./data/v1/scans/1pXnuDYAj8r/matterport_camera_intrinsics.zip
开始下载 ./data/v1/scans/1pXnuDYAj8r/matterport_camera_poses.zip (0.61 MB)
下载进度: 100% (0.61/0.61 MB)
下载完成:./data/v1/scans/1pXnuDYAj8r/matterport_camera_poses.zip
开始下载 ./data/v1/scans/1pXnuDYAj8r/matterport_color_images.zip (537.00 MB)
下载进度: 100% (537.00/537.00 MB)
............
下载完成:./data/v1/scans/1pXnuDYAj8r/undistorted_color_images.zip
开始下载 ./data/v1/scans/1pXnuDYAj8r/undistorted_depth_images.zip (1282.63 MB)
下载进度: 100% (1282.63/1282.63 MB)
下载完成:./data/v1/scans/1pXnuDYAj8r/undistorted_depth_images.zip
开始下载 ./data/v1/scans/1pXnuDYAj8r/undistorted_normal_images.zip (2808.76 MB)
下载进度: 90% (2528.00/2808.76 MB)
下载过程中,场景数据的文件:
17DRP5sb8fy任务包含的内容:
...............
任务数据文件:
指定某个场景ID,进行下载,执行命令:
python download_mp.py --task habitat -o ./data --id 17DRP5sb8fy
打印信息:
Downloading MP scan 17DRP5sb8fy ...
开始下载 ./data/v1/scans/17DRP5sb8fy/cameras.zip (0.00 MB)
下载进度: 100% (0.00/0.00 MB)
下载完成:./data/v1/scans/17DRP5sb8fy/cameras.zip
开始下载 ./data/v1/scans/17DRP5sb8fy/matterport_camera_intrinsics.zip (0.05 MB)
下载进度: 100% (0.05/0.05 MB)
........
下载完成:./data/v1/scans/17DRP5sb8fy/image_overlap_data.zip
开始下载 ./data/v1/scans/17DRP5sb8fy/poisson_meshes.zip (136.50 MB)
下载进度: 100% (136.50/136.50 MB)
下载完成:./data/v1/scans/17DRP5sb8fy/poisson_meshes.zip
开始下载 ./data/v1/scans/17DRP5sb8fy/sens.zip (1402.69 MB)
下载进度: 100% (1402.69/1402.69 MB)
下载完成:./data/v1/scans/17DRP5sb8fy/sens.zip
Downloaded scan 17DRP5sb8fy
分享完成~