傅里叶积分法求解偏微分方程
题目
问题 5. 在以下问题中,解 u(x,t) u(x, t) u(x,t) 必须以适当的傅里叶积分形式表示:
(a)
{utt=−4uxxxx−∞<x<∞, −∞<t<∞,u∣t=0={1∣x∣<2,0∣x∣≥2,ut∣t=0=0,max∣u∣<∞.
\begin{cases}
u_{tt} = -4u_{xxxx} & -\infty < x < \infty, \, -\infty < t < \infty, \\
u|_{t=0} =
\begin{cases}
1 & |x| < 2, \\
0 & |x| \geq 2,
\end{cases} \\
u_{t}|_{t=0} = 0, \\
\max |u| < \infty.
\end{cases}
⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧utt=−4uxxxxu∣t=0={10∣x∣<2,∣x∣≥2,ut∣t=0=0,max∣u∣<∞.−∞<x<∞,−∞<t<∞,
(b)
{ut=4uxx−∞<x<∞, t>0,u∣t=0=e−∣x∣,max∣u∣<∞.
\begin{cases}
u_t = 4u_{xx} & -\infty < x < \infty, \, t > 0, \\
u|_{t=0} = e^{-|x|}, \\
\max |u| < \infty.
\end{cases}
⎩⎪⎨⎪⎧ut=4uxxu∣t=0=e−∣x∣,max∣u∣<∞.−∞<x<∞,t>0,
©
{ut=uxx−∞<x<∞, t>0,u∣t=0={1−x2∣x∣<1,0∣x∣≥1,max∣u∣<∞.
\begin{cases}
u_t = u_{xx} & -\infty < x < \infty, \, t > 0, \\
u|_{t=0} =
\begin{cases}
1 - x^2 & |x| < 1, \\
0 & |x| \geq 1,
\end{cases} \\
\max |u| < \infty.
\end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧ut=uxxu∣t=0={1−x20∣x∣<1,∣x∣≥1,max∣u∣<∞.−∞<x<∞,t>0,
(d)
{utt=uxx−4u−∞<x<∞, −∞<t<∞,u∣t=0=0,ut∣t=0=e−x2/2,max∣u∣<∞.
\begin{cases}
u_{tt} = u_{xx} - 4u & -\infty < x < \infty, \, -\infty < t < \infty, \\
u|_{t=0} = 0, \\
u_t|_{t=0} = e^{-x^2/2}, \\
\max |u| < \infty.
\end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧utt=uxx−4uu∣t=0=0,ut∣t=0=e−x2/2,max∣u∣<∞.−∞<x<∞,−∞<t<∞,
解题
所有解均已以傅里叶积分形式表示,满足方程、初始条件和有界性要求。积分形式为最终答案。
以下针对每个部分,使用傅里叶变换方法求解。傅里叶变换定义为:
u^(k,t)=∫−∞∞u(x,t)e−ikxdx,
\hat{u}(k, t) = \int_{-\infty}^{\infty} u(x, t) e^{-ikx} dx,
u^(k,t)=∫−∞∞u(x,t)e−ikxdx,
反变换为:
u(x,t)=12π∫−∞∞u^(k,t)eikxdk.
u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(k, t) e^{ikx} dk.
u(x,t)=2π1∫−∞∞u^(k,t)eikxdk.
根据问题的对称性,部分解可简化为余弦积分形式。
(a) 解 utt=−4uxxxx u_{tt} = -4u_{xxxx} utt=−4uxxxx 初值问题
- 方程: utt=−4uxxxx u_{tt} = -4u_{xxxx} utt=−4uxxxx
- 初始条件: u(x,0)={1∣x∣<20∣x∣≥2 u(x, 0) = \begin{cases} 1 & |x| < 2 \\ 0 & |x| \geq 2 \end{cases} u(x,0)={10∣x∣<2∣x∣≥2, ut(x,0)=0 u_t(x, 0) = 0 ut(x,0)=0
- 有界性条件: max∣u∣<∞ \max |u| < \infty max∣u∣<∞
应用傅里叶变换于空间变量:
F{utt}=−4F{uxxxx} ⟹ ∂2∂t2u^(k,t)=−4(ik)4u^(k,t)=−4k4u^(k,t).
\mathcal{F}\{u_{tt}\} = -4 \mathcal{F}\{u_{xxxx}\} \implies \frac{\partial^2}{\partial t^2} \hat{u}(k, t) = -4 (ik)^4 \hat{u}(k, t) = -4k^4 \hat{u}(k, t).
F{utt}=−4F{uxxxx}⟹∂t2∂2u^(k,t)=−4(ik)4u^(k,t)=−4k4u^(k,t).
解得:
u^(k,t)=A(k)cos(2k2t)+B(k)sin(2k2t).
\hat{u}(k, t) = A(k) \cos(2k^2 t) + B(k) \sin(2k^2 t).
u^(k,t)=A(k)cos(2k2t)+B(k)sin(2k2t).
由初始条件:
- u^(k,0)=F{u(x,0)}=∫−22e−ikxdx=2sin(2k)k \hat{u}(k, 0) = \mathcal{F}\{u(x, 0)\} = \int_{-2}^{2} e^{-ikx} dx = \frac{2 \sin(2k)}{k} u^(k,0)=F{u(x,0)}=∫−22e−ikxdx=k2sin(2k)
- ∂∂tu^(k,0)=F{ut(x,0)}=0 \frac{\partial}{\partial t} \hat{u}(k, 0) = \mathcal{F}\{u_t(x, 0)\} = 0 ∂t∂u^(k,0)=F{ut(x,0)}=0
代入:
u^(k,0)=A(k)=2sin(2k)k,∂∂tu^(k,0)=2k2B(k)=0 ⟹ B(k)=0.
\hat{u}(k, 0) = A(k) = \frac{2 \sin(2k)}{k}, \quad \frac{\partial}{\partial t} \hat{u}(k, 0) = 2k^2 B(k) = 0 \implies B(k) = 0.
u^(k,0)=A(k)=k2sin(2k),∂t∂u^(k,0)=2k2B(k)=0⟹B(k)=0.
所以:
u^(k,t)=2sin(2k)kcos(2k2t).
\hat{u}(k, t) = \frac{2 \sin(2k)}{k} \cos(2k^2 t).
u^(k,t)=k2sin(2k)cos(2k2t).
反傅里叶变换,并利用 u^(k,t) \hat{u}(k, t) u^(k,t) 为偶函数:
u(x,t)=12π∫−∞∞2sin(2k)kcos(2k2t)eikxdk=1π∫0∞2sin(2k)kcos(2k2t)cos(kx)dk.
u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2 \sin(2k)}{k} \cos(2k^2 t) e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} \frac{2 \sin(2k)}{k} \cos(2k^2 t) \cos(kx) dk.
u(x,t)=2π1∫−∞∞k2sin(2k)cos(2k2t)eikxdk=π1∫0∞k2sin(2k)cos(2k2t)cos(kx)dk.
简化得:
u(x,t)=2π∫0∞sin(2k)cos(2k2t)cos(kx)kdk
\boxed{u(x,t) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{\sin(2k) \cos(2k^{2} t) \cos(kx)}{k} dk}
u(x,t)=π2∫0∞ksin(2k)cos(2k2t)cos(kx)dk
(b) 解 ut=4uxx u_t = 4u_{xx} ut=4uxx 初值问题
- 方程: ut=4uxx u_t = 4u_{xx} ut=4uxx
- 初始条件: u(x,0)=e−∣x∣ u(x, 0) = e^{-|x|} u(x,0)=e−∣x∣
- 有界性条件: max∣u∣<∞ \max |u| < \infty max∣u∣<∞
应用傅里叶变换:
F{ut}=4F{uxx} ⟹ ∂∂tu^(k,t)=4(ik)2u^(k,t)=−4k2u^(k,t).
\mathcal{F}\{u_t\} = 4 \mathcal{F}\{u_{xx}\} \implies \frac{\partial}{\partial t} \hat{u}(k, t) = 4 (ik)^2 \hat{u}(k, t) = -4k^2 \hat{u}(k, t).
F{ut}=4F{uxx}⟹∂t∂u^(k,t)=4(ik)2u^(k,t)=−4k2u^(k,t).
解得:
u^(k,t)=u^(k,0)e−4k2t.
\hat{u}(k, t) = \hat{u}(k, 0) e^{-4k^2 t}.
u^(k,t)=u^(k,0)e−4k2t.
初始变换(利用 e−∣x∣ e^{-|x|} e−∣x∣ 为偶函数):
u^(k,0)=∫−∞∞e−∣x∣e−ikxdx=2∫0∞e−xcos(kx)dx=2⋅11+k2=21+k2.
\hat{u}(k, 0) = \int_{-\infty}^{\infty} e^{-|x|} e^{-ikx} dx = 2 \int_{0}^{\infty} e^{-x} \cos(kx) dx = 2 \cdot \frac{1}{1 + k^2} = \frac{2}{1 + k^2}.
u^(k,0)=∫−∞∞e−∣x∣e−ikxdx=2∫0∞e−xcos(kx)dx=2⋅1+k21=1+k22.
所以:
u^(k,t)=21+k2e−4k2t.
\hat{u}(k, t) = \frac{2}{1 + k^2} e^{-4k^2 t}.
u^(k,t)=1+k22e−4k2t.
反傅里叶变换,并利用被积函数为偶函数:
u(x,t)=12π∫−∞∞21+k2e−4k2teikxdk=1π∫0∞21+k2e−4k2tcos(kx)dk.
u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2}{1 + k^2} e^{-4k^2 t} e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} \frac{2}{1 + k^2} e^{-4k^2 t} \cos(kx) dk.
u(x,t)=2π1∫−∞∞1+k22e−4k2teikxdk=π1∫0∞1+k22e−4k2tcos(kx)dk.
简化得:
u(x,t)=2π∫0∞e−4k2tcos(kx)1+k2dk
\boxed{u(x,t) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{e^{-4k^{2} t} \cos(kx)}{1 + k^{2}} dk}
u(x,t)=π2∫0∞1+k2e−4k2tcos(kx)dk
© 解 ut=uxx u_t = u_{xx} ut=uxx 初值问题
- 方程: ut=uxx u_t = u_{xx} ut=uxx
- 初始条件: u(x,0)={1−x2∣x∣<10∣x∣≥1 u(x, 0) = \begin{cases} 1 - x^2 & |x| < 1 \\ 0 & |x| \geq 1 \end{cases} u(x,0)={1−x20∣x∣<1∣x∣≥1
- 有界性条件: max∣u∣<∞ \max |u| < \infty max∣u∣<∞
应用傅里叶变换:
F{ut}=F{uxx} ⟹ ∂∂tu^(k,t)=(ik)2u^(k,t)=−k2u^(k,t).
\mathcal{F}\{u_t\} = \mathcal{F}\{u_{xx}\} \implies \frac{\partial}{\partial t} \hat{u}(k, t) = (ik)^2 \hat{u}(k, t) = -k^2 \hat{u}(k, t).
F{ut}=F{uxx}⟹∂t∂u^(k,t)=(ik)2u^(k,t)=−k2u^(k,t).
解得:
u^(k,t)=u^(k,0)e−k2t.
\hat{u}(k, t) = \hat{u}(k, 0) e^{-k^2 t}.
u^(k,t)=u^(k,0)e−k2t.
初始变换(利用 u(x,0) u(x, 0) u(x,0) 为偶函数):
u^(k,0)=∫−11(1−x2)e−ikxdx=2∫01(1−x2)cos(kx)dx.
\hat{u}(k, 0) = \int_{-1}^{1} (1 - x^2) e^{-ikx} dx = 2 \int_{0}^{1} (1 - x^2) \cos(kx) dx.
u^(k,0)=∫−11(1−x2)e−ikxdx=2∫01(1−x2)cos(kx)dx.
计算积分:
∫01(1−x2)cos(kx)dx=2(sink−kcosk)k3.
\int_{0}^{1} (1 - x^2) \cos(kx) dx = \frac{2 (\sin k - k \cos k)}{k^3}.
∫01(1−x2)cos(kx)dx=k32(sink−kcosk).
所以:
u^(k,0)=2⋅2(sink−kcosk)k3=4(sink−kcosk)k3.
\hat{u}(k, 0) = 2 \cdot \frac{2 (\sin k - k \cos k)}{k^3} = \frac{4 (\sin k - k \cos k)}{k^3}.
u^(k,0)=2⋅k32(sink−kcosk)=k34(sink−kcosk).
因此:
u^(k,t)=4(sink−kcosk)k3e−k2t.
\hat{u}(k, t) = \frac{4 (\sin k - k \cos k)}{k^3} e^{-k^2 t}.
u^(k,t)=k34(sink−kcosk)e−k2t.
反傅里叶变换,并利用 u^(k,t) \hat{u}(k, t) u^(k,t) 为偶函数:
u(x,t)=12π∫−∞∞4(sink−kcosk)k3e−k2teikxdk=1π∫0∞4(sink−kcosk)k3e−k2tcos(kx)dk.
u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{4 (\sin k - k \cos k)}{k^3} e^{-k^2 t} e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} \frac{4 (\sin k - k \cos k)}{k^3} e^{-k^2 t} \cos(kx) dk.
u(x,t)=2π1∫−∞∞k34(sink−kcosk)e−k2teikxdk=π1∫0∞k34(sink−kcosk)e−k2tcos(kx)dk.
简化得:
u(x,t)=4π∫0∞(sink−kcosk)e−k2tcos(kx)k3dk
\boxed{u(x,t) = \dfrac{4}{\pi} \int_{0}^{\infty} \dfrac{(\sin k - k \cos k) e^{-k^{2} t} \cos(kx)}{k^{3}} dk}
u(x,t)=π4∫0∞k3(sink−kcosk)e−k2tcos(kx)dk
(d) 解 utt=uxx−4u u_{tt} = u_{xx} - 4u utt=uxx−4u 初值问题
- 方程: utt=uxx−4u u_{tt} = u_{xx} - 4u utt=uxx−4u
- 初始条件: u(x,0)=0 u(x, 0) = 0 u(x,0)=0, ut(x,0)=e−x2/2 u_t(x, 0) = e^{-x^2 / 2} ut(x,0)=e−x2/2
- 有界性条件: max∣u∣<∞ \max |u| < \infty max∣u∣<∞
应用傅里叶变换:
F{utt}=F{uxx−4u} ⟹ ∂2∂t2u^(k,t)=(ik)2u^(k,t)−4u^(k,t)=−(k2+4)u^(k,t).
\mathcal{F}\{u_{tt}\} = \mathcal{F}\{u_{xx} - 4u\} \implies \frac{\partial^2}{\partial t^2} \hat{u}(k, t) = (ik)^2 \hat{u}(k, t) - 4 \hat{u}(k, t) = -(k^2 + 4) \hat{u}(k, t).
F{utt}=F{uxx−4u}⟹∂t2∂2u^(k,t)=(ik)2u^(k,t)−4u^(k,t)=−(k2+4)u^(k,t).
解得:
u^(k,t)=A(k)cos(ωt)+B(k)sin(ωt),ω=k2+4.
\hat{u}(k, t) = A(k) \cos(\omega t) + B(k) \sin(\omega t), \quad \omega = \sqrt{k^2 + 4}.
u^(k,t)=A(k)cos(ωt)+B(k)sin(ωt),ω=k2+4.
由初始条件:
- u^(k,0)=F{u(x,0)}=0 ⟹ A(k)=0 \hat{u}(k, 0) = \mathcal{F}\{u(x, 0)\} = 0 \implies A(k) = 0 u^(k,0)=F{u(x,0)}=0⟹A(k)=0
- ∂∂tu^(k,0)=F{ut(x,0)}=F{e−x2/2}=2πe−k2/2 \frac{\partial}{\partial t} \hat{u}(k, 0) = \mathcal{F}\{u_t(x, 0)\} = \mathcal{F}\{e^{-x^2 / 2}\} = \sqrt{2\pi} e^{-k^2 / 2} ∂t∂u^(k,0)=F{ut(x,0)}=F{e−x2/2}=2πe−k2/2
且:
∂∂tu^(k,t)=ωB(k)cos(ωt),∂∂tu^(k,0)=ωB(k)=2πe−k2/2.
\frac{\partial}{\partial t} \hat{u}(k, t) = \omega B(k) \cos(\omega t), \quad \frac{\partial}{\partial t} \hat{u}(k, 0) = \omega B(k) = \sqrt{2\pi} e^{-k^2 / 2}.
∂t∂u^(k,t)=ωB(k)cos(ωt),∂t∂u^(k,0)=ωB(k)=2πe−k2/2.
所以:
B(k)=2πe−k2/2ω=2πe−k2/2k2+4,
B(k) = \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\omega} = \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\sqrt{k^2 + 4}},
B(k)=2πωe−k2/2=2πk2+4e−k2/2,
u^(k,t)=2πe−k2/2k2+4sin(ωt).
\hat{u}(k, t) = \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\sqrt{k^2 + 4}} \sin(\omega t).
u^(k,t)=2πk2+4e−k2/2sin(ωt).
反傅里叶变换:
u(x,t)=12π∫−∞∞2πe−k2/2k2+4sin(tk2+4)eikxdk.
u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\sqrt{k^2 + 4}} \sin\left(t \sqrt{k^2 + 4}\right) e^{ikx} dk.
u(x,t)=2π1∫−∞∞2πk2+4e−k2/2sin(tk2+4)eikxdk.
简化得:
KaTeX parse error: End of input in macro argument at position 8:
\boxed{̲u(x,t) = \dfrac…
由于解为实值且初始条件偶对称,亦可写为余弦形式:
KaTeX parse error: Expected '}', got 'EOF' at end of input: … \cos(kx) dk,
但标准傅里叶积分形式已给出。