当前位置: 首页 > news >正文

傅里叶积分法求解偏微分方程

题目

问题 5. 在以下问题中,解 u(x,t) u(x, t) u(x,t) 必须以适当的傅里叶积分形式表示:

(a)
{utt=−4uxxxx−∞<x<∞, −∞<t<∞,u∣t=0={1∣x∣<2,0∣x∣≥2,ut∣t=0=0,max⁡∣u∣<∞. \begin{cases} u_{tt} = -4u_{xxxx} & -\infty < x < \infty, \, -\infty < t < \infty, \\ u|_{t=0} = \begin{cases} 1 & |x| < 2, \\ 0 & |x| \geq 2, \end{cases} \\ u_{t}|_{t=0} = 0, \\ \max |u| < \infty. \end{cases} utt=4uxxxxut=0={10x<2,x2,utt=0=0,maxu<.<x<,<t<,

(b)
{ut=4uxx−∞<x<∞, t>0,u∣t=0=e−∣x∣,max⁡∣u∣<∞. \begin{cases} u_t = 4u_{xx} & -\infty < x < \infty, \, t > 0, \\ u|_{t=0} = e^{-|x|}, \\ \max |u| < \infty. \end{cases} ut=4uxxut=0=ex,maxu<.<x<,t>0,

©
{ut=uxx−∞<x<∞, t>0,u∣t=0={1−x2∣x∣<1,0∣x∣≥1,max⁡∣u∣<∞. \begin{cases} u_t = u_{xx} & -\infty < x < \infty, \, t > 0, \\ u|_{t=0} = \begin{cases} 1 - x^2 & |x| < 1, \\ 0 & |x| \geq 1, \end{cases} \\ \max |u| < \infty. \end{cases} ut=uxxut=0={1x20x<1,x1,maxu<.<x<,t>0,

(d)
{utt=uxx−4u−∞<x<∞, −∞<t<∞,u∣t=0=0,ut∣t=0=e−x2/2,max⁡∣u∣<∞. \begin{cases} u_{tt} = u_{xx} - 4u & -\infty < x < \infty, \, -\infty < t < \infty, \\ u|_{t=0} = 0, \\ u_t|_{t=0} = e^{-x^2/2}, \\ \max |u| < \infty. \end{cases} utt=uxx4uut=0=0,utt=0=ex2/2,maxu<.<x<,<t<,

解题

所有解均已以傅里叶积分形式表示,满足方程、初始条件和有界性要求。积分形式为最终答案。
以下针对每个部分,使用傅里叶变换方法求解。傅里叶变换定义为:
u^(k,t)=∫−∞∞u(x,t)e−ikxdx, \hat{u}(k, t) = \int_{-\infty}^{\infty} u(x, t) e^{-ikx} dx, u^(k,t)=u(x,t)eikxdx,
反变换为:
u(x,t)=12π∫−∞∞u^(k,t)eikxdk. u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(k, t) e^{ikx} dk. u(x,t)=2π1u^(k,t)eikxdk.
根据问题的对称性,部分解可简化为余弦积分形式。

(a) 解 utt=−4uxxxx u_{tt} = -4u_{xxxx} utt=4uxxxx 初值问题

  • 方程: utt=−4uxxxx u_{tt} = -4u_{xxxx} utt=4uxxxx
  • 初始条件: u(x,0)={1∣x∣<20∣x∣≥2 u(x, 0) = \begin{cases} 1 & |x| < 2 \\ 0 & |x| \geq 2 \end{cases} u(x,0)={10x<2x2, ut(x,0)=0 u_t(x, 0) = 0 ut(x,0)=0
  • 有界性条件: max⁡∣u∣<∞ \max |u| < \infty maxu<

应用傅里叶变换于空间变量:
F{utt}=−4F{uxxxx}  ⟹  ∂2∂t2u^(k,t)=−4(ik)4u^(k,t)=−4k4u^(k,t). \mathcal{F}\{u_{tt}\} = -4 \mathcal{F}\{u_{xxxx}\} \implies \frac{\partial^2}{\partial t^2} \hat{u}(k, t) = -4 (ik)^4 \hat{u}(k, t) = -4k^4 \hat{u}(k, t). F{utt}=4F{uxxxx}t22u^(k,t)=4(ik)4u^(k,t)=4k4u^(k,t).
解得:
u^(k,t)=A(k)cos⁡(2k2t)+B(k)sin⁡(2k2t). \hat{u}(k, t) = A(k) \cos(2k^2 t) + B(k) \sin(2k^2 t). u^(k,t)=A(k)cos(2k2t)+B(k)sin(2k2t).
由初始条件:

  • u^(k,0)=F{u(x,0)}=∫−22e−ikxdx=2sin⁡(2k)k \hat{u}(k, 0) = \mathcal{F}\{u(x, 0)\} = \int_{-2}^{2} e^{-ikx} dx = \frac{2 \sin(2k)}{k} u^(k,0)=F{u(x,0)}=22eikxdx=k2sin(2k)
  • ∂∂tu^(k,0)=F{ut(x,0)}=0 \frac{\partial}{\partial t} \hat{u}(k, 0) = \mathcal{F}\{u_t(x, 0)\} = 0 tu^(k,0)=F{ut(x,0)}=0

代入:
u^(k,0)=A(k)=2sin⁡(2k)k,∂∂tu^(k,0)=2k2B(k)=0  ⟹  B(k)=0. \hat{u}(k, 0) = A(k) = \frac{2 \sin(2k)}{k}, \quad \frac{\partial}{\partial t} \hat{u}(k, 0) = 2k^2 B(k) = 0 \implies B(k) = 0. u^(k,0)=A(k)=k2sin(2k),tu^(k,0)=2k2B(k)=0B(k)=0.
所以:
u^(k,t)=2sin⁡(2k)kcos⁡(2k2t). \hat{u}(k, t) = \frac{2 \sin(2k)}{k} \cos(2k^2 t). u^(k,t)=k2sin(2k)cos(2k2t).
反傅里叶变换,并利用 u^(k,t) \hat{u}(k, t) u^(k,t) 为偶函数:
u(x,t)=12π∫−∞∞2sin⁡(2k)kcos⁡(2k2t)eikxdk=1π∫0∞2sin⁡(2k)kcos⁡(2k2t)cos⁡(kx)dk. u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2 \sin(2k)}{k} \cos(2k^2 t) e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} \frac{2 \sin(2k)}{k} \cos(2k^2 t) \cos(kx) dk. u(x,t)=2π1k2sin(2k)cos(2k2t)eikxdk=π10k2sin(2k)cos(2k2t)cos(kx)dk.
简化得:
u(x,t)=2π∫0∞sin⁡(2k)cos⁡(2k2t)cos⁡(kx)kdk \boxed{u(x,t) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{\sin(2k) \cos(2k^{2} t) \cos(kx)}{k} dk} u(x,t)=π20ksin(2k)cos(2k2t)cos(kx)dk

(b) 解 ut=4uxx u_t = 4u_{xx} ut=4uxx 初值问题

  • 方程: ut=4uxx u_t = 4u_{xx} ut=4uxx
  • 初始条件: u(x,0)=e−∣x∣ u(x, 0) = e^{-|x|} u(x,0)=ex
  • 有界性条件: max⁡∣u∣<∞ \max |u| < \infty maxu<

应用傅里叶变换:
F{ut}=4F{uxx}  ⟹  ∂∂tu^(k,t)=4(ik)2u^(k,t)=−4k2u^(k,t). \mathcal{F}\{u_t\} = 4 \mathcal{F}\{u_{xx}\} \implies \frac{\partial}{\partial t} \hat{u}(k, t) = 4 (ik)^2 \hat{u}(k, t) = -4k^2 \hat{u}(k, t). F{ut}=4F{uxx}tu^(k,t)=4(ik)2u^(k,t)=4k2u^(k,t).
解得:
u^(k,t)=u^(k,0)e−4k2t. \hat{u}(k, t) = \hat{u}(k, 0) e^{-4k^2 t}. u^(k,t)=u^(k,0)e4k2t.
初始变换(利用 e−∣x∣ e^{-|x|} ex 为偶函数):
u^(k,0)=∫−∞∞e−∣x∣e−ikxdx=2∫0∞e−xcos⁡(kx)dx=2⋅11+k2=21+k2. \hat{u}(k, 0) = \int_{-\infty}^{\infty} e^{-|x|} e^{-ikx} dx = 2 \int_{0}^{\infty} e^{-x} \cos(kx) dx = 2 \cdot \frac{1}{1 + k^2} = \frac{2}{1 + k^2}. u^(k,0)=exeikxdx=20excos(kx)dx=21+k21=1+k22.
所以:
u^(k,t)=21+k2e−4k2t. \hat{u}(k, t) = \frac{2}{1 + k^2} e^{-4k^2 t}. u^(k,t)=1+k22e4k2t.
反傅里叶变换,并利用被积函数为偶函数:
u(x,t)=12π∫−∞∞21+k2e−4k2teikxdk=1π∫0∞21+k2e−4k2tcos⁡(kx)dk. u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2}{1 + k^2} e^{-4k^2 t} e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} \frac{2}{1 + k^2} e^{-4k^2 t} \cos(kx) dk. u(x,t)=2π11+k22e4k2teikxdk=π101+k22e4k2tcos(kx)dk.
简化得:
u(x,t)=2π∫0∞e−4k2tcos⁡(kx)1+k2dk \boxed{u(x,t) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{e^{-4k^{2} t} \cos(kx)}{1 + k^{2}} dk} u(x,t)=π201+k2e4k2tcos(kx)dk

© 解 ut=uxx u_t = u_{xx} ut=uxx 初值问题

  • 方程: ut=uxx u_t = u_{xx} ut=uxx
  • 初始条件: u(x,0)={1−x2∣x∣<10∣x∣≥1 u(x, 0) = \begin{cases} 1 - x^2 & |x| < 1 \\ 0 & |x| \geq 1 \end{cases} u(x,0)={1x20x<1x1
  • 有界性条件: max⁡∣u∣<∞ \max |u| < \infty maxu<

应用傅里叶变换:
F{ut}=F{uxx}  ⟹  ∂∂tu^(k,t)=(ik)2u^(k,t)=−k2u^(k,t). \mathcal{F}\{u_t\} = \mathcal{F}\{u_{xx}\} \implies \frac{\partial}{\partial t} \hat{u}(k, t) = (ik)^2 \hat{u}(k, t) = -k^2 \hat{u}(k, t). F{ut}=F{uxx}tu^(k,t)=(ik)2u^(k,t)=k2u^(k,t).
解得:
u^(k,t)=u^(k,0)e−k2t. \hat{u}(k, t) = \hat{u}(k, 0) e^{-k^2 t}. u^(k,t)=u^(k,0)ek2t.
初始变换(利用 u(x,0) u(x, 0) u(x,0) 为偶函数):
u^(k,0)=∫−11(1−x2)e−ikxdx=2∫01(1−x2)cos⁡(kx)dx. \hat{u}(k, 0) = \int_{-1}^{1} (1 - x^2) e^{-ikx} dx = 2 \int_{0}^{1} (1 - x^2) \cos(kx) dx. u^(k,0)=11(1x2)eikxdx=201(1x2)cos(kx)dx.
计算积分:
∫01(1−x2)cos⁡(kx)dx=2(sin⁡k−kcos⁡k)k3. \int_{0}^{1} (1 - x^2) \cos(kx) dx = \frac{2 (\sin k - k \cos k)}{k^3}. 01(1x2)cos(kx)dx=k32(sinkkcosk).
所以:
u^(k,0)=2⋅2(sin⁡k−kcos⁡k)k3=4(sin⁡k−kcos⁡k)k3. \hat{u}(k, 0) = 2 \cdot \frac{2 (\sin k - k \cos k)}{k^3} = \frac{4 (\sin k - k \cos k)}{k^3}. u^(k,0)=2k32(sinkkcosk)=k34(sinkkcosk).
因此:
u^(k,t)=4(sin⁡k−kcos⁡k)k3e−k2t. \hat{u}(k, t) = \frac{4 (\sin k - k \cos k)}{k^3} e^{-k^2 t}. u^(k,t)=k34(sinkkcosk)ek2t.
反傅里叶变换,并利用 u^(k,t) \hat{u}(k, t) u^(k,t) 为偶函数:
u(x,t)=12π∫−∞∞4(sin⁡k−kcos⁡k)k3e−k2teikxdk=1π∫0∞4(sin⁡k−kcos⁡k)k3e−k2tcos⁡(kx)dk. u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{4 (\sin k - k \cos k)}{k^3} e^{-k^2 t} e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} \frac{4 (\sin k - k \cos k)}{k^3} e^{-k^2 t} \cos(kx) dk. u(x,t)=2π1k34(sinkkcosk)ek2teikxdk=π10k34(sinkkcosk)ek2tcos(kx)dk.
简化得:
u(x,t)=4π∫0∞(sin⁡k−kcos⁡k)e−k2tcos⁡(kx)k3dk \boxed{u(x,t) = \dfrac{4}{\pi} \int_{0}^{\infty} \dfrac{(\sin k - k \cos k) e^{-k^{2} t} \cos(kx)}{k^{3}} dk} u(x,t)=π40k3(sinkkcosk)ek2tcos(kx)dk

(d) 解 utt=uxx−4u u_{tt} = u_{xx} - 4u utt=uxx4u 初值问题

  • 方程: utt=uxx−4u u_{tt} = u_{xx} - 4u utt=uxx4u
  • 初始条件: u(x,0)=0 u(x, 0) = 0 u(x,0)=0, ut(x,0)=e−x2/2 u_t(x, 0) = e^{-x^2 / 2} ut(x,0)=ex2/2
  • 有界性条件: max⁡∣u∣<∞ \max |u| < \infty maxu<

应用傅里叶变换:
F{utt}=F{uxx−4u}  ⟹  ∂2∂t2u^(k,t)=(ik)2u^(k,t)−4u^(k,t)=−(k2+4)u^(k,t). \mathcal{F}\{u_{tt}\} = \mathcal{F}\{u_{xx} - 4u\} \implies \frac{\partial^2}{\partial t^2} \hat{u}(k, t) = (ik)^2 \hat{u}(k, t) - 4 \hat{u}(k, t) = -(k^2 + 4) \hat{u}(k, t). F{utt}=F{uxx4u}t22u^(k,t)=(ik)2u^(k,t)4u^(k,t)=(k2+4)u^(k,t).
解得:
u^(k,t)=A(k)cos⁡(ωt)+B(k)sin⁡(ωt),ω=k2+4. \hat{u}(k, t) = A(k) \cos(\omega t) + B(k) \sin(\omega t), \quad \omega = \sqrt{k^2 + 4}. u^(k,t)=A(k)cos(ωt)+B(k)sin(ωt),ω=k2+4.
由初始条件:

  • u^(k,0)=F{u(x,0)}=0  ⟹  A(k)=0 \hat{u}(k, 0) = \mathcal{F}\{u(x, 0)\} = 0 \implies A(k) = 0 u^(k,0)=F{u(x,0)}=0A(k)=0
  • ∂∂tu^(k,0)=F{ut(x,0)}=F{e−x2/2}=2πe−k2/2 \frac{\partial}{\partial t} \hat{u}(k, 0) = \mathcal{F}\{u_t(x, 0)\} = \mathcal{F}\{e^{-x^2 / 2}\} = \sqrt{2\pi} e^{-k^2 / 2} tu^(k,0)=F{ut(x,0)}=F{ex2/2}=2πek2/2

且:
∂∂tu^(k,t)=ωB(k)cos⁡(ωt),∂∂tu^(k,0)=ωB(k)=2πe−k2/2. \frac{\partial}{\partial t} \hat{u}(k, t) = \omega B(k) \cos(\omega t), \quad \frac{\partial}{\partial t} \hat{u}(k, 0) = \omega B(k) = \sqrt{2\pi} e^{-k^2 / 2}. tu^(k,t)=ωB(k)cos(ωt),tu^(k,0)=ωB(k)=2πek2/2.
所以:
B(k)=2πe−k2/2ω=2πe−k2/2k2+4, B(k) = \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\omega} = \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\sqrt{k^2 + 4}}, B(k)=2πωek2/2=2πk2+4ek2/2,
u^(k,t)=2πe−k2/2k2+4sin⁡(ωt). \hat{u}(k, t) = \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\sqrt{k^2 + 4}} \sin(\omega t). u^(k,t)=2πk2+4ek2/2sin(ωt).
反傅里叶变换:
u(x,t)=12π∫−∞∞2πe−k2/2k2+4sin⁡(tk2+4)eikxdk. u(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{2\pi} \frac{e^{-k^2 / 2}}{\sqrt{k^2 + 4}} \sin\left(t \sqrt{k^2 + 4}\right) e^{ikx} dk. u(x,t)=2π12πk2+4ek2/2sin(tk2+4)eikxdk.
简化得:
KaTeX parse error: End of input in macro argument at position 8: \boxed{̲u(x,t) = \dfrac…
由于解为实值且初始条件偶对称,亦可写为余弦形式:
KaTeX parse error: Expected '}', got 'EOF' at end of input: … \cos(kx) dk,
但标准傅里叶积分形式已给出。

http://www.dtcms.com/a/286866.html

相关文章:

  • 第七章 愿景09 海波龙的坑
  • 【Python练习】048. 编写一个函数,实现简单的命令行接口,接受用户输入并响应
  • springCloud -- 微服务01
  • MoveIt
  • GaussDB join 连接的用法
  • 已经安装numpy,但是报错ModuleNotFoundError: No module named ‘numpy‘
  • 船舶终端数据采集与监管平台解决方案
  • EasyGBS算法算力云平台:算法仓百种算法,全形态算力协同
  • Python 之地址编码识别
  • 判断数据类型的方法
  • 分享|技师院校人工智能技术应用专业—数字人教学辅助平台有哪些特点
  • java常见的jvm内存分析工具
  • hive的sql优化思路-明白底层运行逻辑
  • 机械材料计算软件,快速核算重量
  • MySQL 插入时间 更新时间
  • android版本编译问题之Hvac 应用体积优化问题处理记录
  • 大模型微调流程解读:基于Qwen2.5-3B-Instruct的LoRA高效微调全流程解析
  • 讯方·智汇云校 | 课程和优势介绍
  • Glary Utilities (PC维护百宝箱) v6.24.0.28 便携版
  • Composer 可以通过指定 PHP 版本运行
  • vue2 面试题及详细答案150道(71 - 80)
  • 从 C# 到 Python:6 天极速入门(第二天)
  • 解决网络问题基本步骤
  • 【52】MFC入门到精通——MFC串口助手(二)---通信版(发送数据 、发送文件、数据转换、清空发送区、打开/关闭文件),附源码
  • 路由的概述
  • Android开发工程师:Linux一条find grep命令通关搜索内容与文件
  • ffplay显示rgb565格式的文件
  • CentOS下安装Mysql
  • Prometheus错误率监控与告警实战:如何自定义规则精准预警服务器异常
  • 【Linux】Linux异步IO-io_uring