当前位置: 首页 > news >正文

HIVE实战处理(二十四)留存用户数

留存概念:
次X日活跃留存,次X日新增留存,也就是看今天的新增或活跃用户在后续几天的留存情况

一、留存表的生成逻辑

因为用户活跃日期和留存的日期无法对齐所以搞了2级分区(dt,static_day)

1)首先获得计算日D、根据要出的次X日留存,推算出前面的DT ,整体从活跃表里根据这些日期生成临时活跃表tmp1
2)分别把计算DT和前X日的DT进行匹配,按相差的天数进行匹配,如果匹配一直分别得到对应的次X日留存标识。
3)需要使用1个新的字段存储留存指标的的日期,比如20250701号的留存keep1_num只能等20250702号过完才能计算,那对应也是7.1号算留存日期,是指在DT=20250702的留存时间。

所以根据dt往前推算的日期都是留存日期,不能写到dt这个字段里,因为除了留存指标外还要计算统计日的指标。
如果留存日期=统计日期的,出的当日活跃。留存日期< 统计日期的话,出的是次X日留存指标。


--活跃临时表
create table tmp1 as 
select ,t1.uuid,t1.dt                                  as statis_day,case when t1.dt='${DT}' then 'Y' else 'N' end                      as keep_0d_active_flag,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-1), '-', '') then 'Y'else 'N' end                      as keep_1d_active_flag,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-2), '-', '') then 'Y'else 'N' end                      as keep_2d_active_flag     ,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-3), '-', '') then 'Y'else 'N' end                      as keep_3d_active_flag      ,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-4), '-', '') then 'Y'else 'N' end                      as keep_4d_active_flag      ,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-5), '-', '') then 'Y'else 'N' end                      as keep_5d_active_flag      ,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-6), '-', '') then 'Y'else 'N' end                      as keep_6d_active_flag      ,case when t1.dt=regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-7), '-', '') then 'Y'else 'N' end                      as keep_7d_active_flag        from 活跃表 t1
where t1.dt in ( 
${DT}
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-1), '-', '')
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-2), '-', '')
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-3), '-', '')
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-4), '-', '')
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-5), '-', '')
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-6), '-', '')    
,regexp_replace(date_add(from_unixtime(to_unix_timestamp('${DT}', 'yyyyMMdd')),-7), '-', '')
);--当日活跃以及留存指标
insert overwrite table 留存表 partition(dt='${DT}')
select   group_id,statis_day,channel,version,sum(case when keep_0d_active_flag='Y' then 1 else 0 end)  as av,sum(case when keep_1d_active_flag='Y' then 1 else 0 end)  as keep_1d_av,sum(case when keep_2d_active_flag='Y' then 1 else 0 end)  as keep_2d_av,sum(case when keep_3d_active_flag='Y' then 1 else 0 end)  as keep_3d_av,sum(case when keep_4d_active_flag='Y' then 1 else 0 end)  as keep_4d_av,sum(case when keep_5d_active_flag='Y' then 1 else 0 end)  as keep_5d_av,sum(case when keep_6d_active_flag='Y' then 1 else 0 end)  as keep_6d_av,sum(case when keep_7d_active_flag='Y' then 1 else 0 end)  as keep_7d_av
from(select cast(grouping__id as bigint)& 7 & 3  as group_id,channel,uuid,statis_day,max(keep_1d_active_flag)      as keep_1d_active_flag,max(keep_2d_active_flag)      as keep_2d_active_flag,max(keep_3d_active_flag)      as keep_3d_active_flag,max(keep_4d_active_flag)      as keep_4d_active_flag,max(keep_5d_active_flag)      as keep_5d_active_flag,max(keep_6d_active_flag)      as keep_6d_active_flag,max(keep_7d_active_flag)      as keep_7d_active_flag from tmp1group by ,channel  --1,version	--2		,uuid       -- 4,statis_day --8				grouping sets(          (channel,uuid,statis_day)    ,(version,uuid,statis_day),(uuid,statis_day)			)
) ta
group by  group_id,statis_day,channel,version

二、对于留存的表的查询处理

1)非留存指标的话,直接使用where dt between ‘20250701’ and ‘20250707’
2)对于留存指标要取static_day,这个static_day是代表留存日期在dt的不同留存指标。

select
dt
,sum(active_num)
,sum(keep1_num)
,sum(keep2_num)
,sum(keep3_num)
,sum(keep4_num)
from
(select
dt,
,active_num
,0 as keep1_num
,0 as keep2_num
,0 as keep3_num
,0 as keep4_num
from 留存表 where dt between ‘20250701’ and ‘20250704’
union all

select
static_day dt,
,0 as active_num
,keep1_num
,keep2_num
,keep3_num
,keep4_num
from 留存表 where static_day between ‘20250701’ and ‘20250704’
) t group by dt

http://www.dtcms.com/a/285968.html

相关文章:

  • 第8天 | openGauss中一个数据库可以存储在多个表空间中
  • mybatisdemo(黑马)
  • 数据结构-3(双向链表、循环链表、栈、队列)
  • 前端-CSS (样式引入、选择器)
  • 7月18日总结
  • 深度学习之----对抗生成网络-pytorch-CycleGAN-and-pix2pix
  • Jenkins pipeline 部署docker通用模板
  • drm驱动学习(一)sunxi_drm初始化
  • 【leetcode】3201. 找出有效子序列的最大长度(1)
  • PyCharm 高效入门指南(核心模块详解二)
  • RoboBrain 2.0(具身智能论文阅读)
  • 笔试——Day12
  • 阿里云alicloud liunux3-安装docker
  • Python编程进阶知识之第二课学习网络爬虫(selenium)
  • JavaScript进阶篇——第九章 异常、this 与性能优化全解(终)
  • 14.链路聚合技术
  • 量化交易如何查询CFD指数实时行情
  • postman接口测试,1个参数有好几个值的时候如何测试比较简单快速?
  • IP协议深入理解
  • 20250718-4-Kubernetes 应用程序生命周期管理-Pod对象:实现机制_笔记
  • 如何保证缓存数据的一致性:数据库和缓存数据一致性,本地缓存和Redis缓存怎么保证数据一致性
  • Netty封装Websocket并实现动态路由
  • Spring Boot 应用优雅停机与资源清理:深入理解关闭钩子
  • 比特币技术简史 第四章:挖矿机制 - 挖矿算法、难度调整与矿池
  • 在ajax中什么时候需要将返回值类型做转换
  • Excel基础:格式化
  • 产品需求文档(PRD)格式全解析:从 RP 到 Word 的选择与实践
  • 2023 年 3 月青少年软编等考 C 语言八级真题解析
  • 回归预测 | MATLAB实现DBO-BP蜣螂算法优化BP神经网络多输入单输出回归预测
  • 借助AI学习开源代码git0.7之三git-init-db