拉普拉斯方程边界问题求解
题目
问题 2. (a) 考虑 Dirichlet 问题
uxx+uyy=0,−∞<x<∞,0<y<1, u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, 0 < y < 1, uxx+uyy=0,−∞<x<∞,0<y<1,
u∣y=0=f(x),u∣y=1=g(x). u|_{y=0} = f(x), \quad u|_{y=1} = g(x). u∣y=0=f(x),u∣y=1=g(x).
对 x x x 进行 Fourier 变换,求解得到的关于 u^(k,y)\hat{u}(k, y)u^(k,y) 的常微分方程问题,并将 u(x,y) u(x, y) u(x,y) 写成 Fourier 积分形式。
(b) 考虑 Dirichlet-Neumann 问题
uxx+uyy=0,−∞<x<∞,0<y<1, u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, 0 < y < 1, uxx+uyy=0,−∞<x<∞,0<y<1,
u∣y=0=f(x),uy∣y=1=g(x). u|_{y=0} = f(x), \quad u_{y}|_{y=1} = g(x). u∣y=0=f(x),uy∣y=1=g(x).
对 x x x 进行 Fourier 变换,求解得到的关于 u^(k,y)\hat{u}(k, y)u^(k,y) 的常微分方程问题,并将 u(x,y) u(x, y) u(x,y) 写成 Fourier 积分形式。
© 考虑 Neumann 问题
uxx+uyy=0,−∞<x<∞,0<y<1, u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, 0 < y < 1, uxx+uyy=0,−∞<x<∞,0<y<1,
uy∣y=0=f(x),uy∣y=1=g(x). u_{y}|_{y=0} = f(x), \quad u_{y}|_{y=1} = g(x). uy∣y=0=f(x),uy∣y=1=g(x).
对 x x x 进行 Fourier 变换,求解得到的关于 u^(k,y)\hat{u}(k, y)u^(k,y) 的常微分方程问题,并将 u(x,y) u(x, y) u(x,y) 写成 Fourier 积分形式。并问 f,g f, g f,g 必须满足什么条件?
解答
(a) Dirichlet 问题
对 x x x 进行 Fourier 变换。定义 Fourier 变换:
u^(k,y)=∫−∞∞u(x,y)e−ikxdx,f^(k)=∫−∞∞f(x)e−ikxdx,g^(k)=∫−∞∞g(x)e−ikxdx.
\hat{u}(k, y) = \int_{-\infty}^{\infty} u(x, y) e^{-i k x} dx, \quad \hat{f}(k) = \int_{-\infty}^{\infty} f(x) e^{-i k x} dx, \quad \hat{g}(k) = \int_{-\infty}^{\infty} g(x) e^{-i k x} dx.
u^(k,y)=∫−∞∞u(x,y)e−ikxdx,f^(k)=∫−∞∞f(x)e−ikxdx,g^(k)=∫−∞∞g(x)e−ikxdx.
原偏微分方程(PDE)变换为:
∂2u^∂y2−k2u^=0,
\frac{\partial^2 \hat{u}}{\partial y^2} - k^2 \hat{u} = 0,
∂y2∂2u^−k2u^=0,
边界条件变换为:
u^(k,0)=f^(k),u^(k,1)=g^(k).
\hat{u}(k, 0) = \hat{f}(k), \quad \hat{u}(k, 1) = \hat{g}(k).
u^(k,0)=f^(k),u^(k,1)=g^(k).
该常微分方程(ODE)的通解为:
u^(k,y)=A(k)cosh(ky)+B(k)sinh(ky).
\hat{u}(k, y) = A(k) \cosh(k y) + B(k) \sinh(k y).
u^(k,y)=A(k)cosh(ky)+B(k)sinh(ky).
应用边界条件:
- 在 y=0 y = 0 y=0: u^(k,0)=A(k)=f^(k)\hat{u}(k, 0) = A(k) = \hat{f}(k)u^(k,0)=A(k)=f^(k),
- 在 y=1 y = 1 y=1: u^(k,1)=f^(k)coshk+B(k)sinhk=g^(k)\hat{u}(k, 1) = \hat{f}(k) \cosh k + B(k) \sinh k = \hat{g}(k)u^(k,1)=f^(k)coshk+B(k)sinhk=g^(k)。
解得:
B(k)=g^(k)−f^(k)coshksinhk,
B(k) = \frac{\hat{g}(k) - \hat{f}(k) \cosh k}{\sinh k},
B(k)=sinhkg^(k)−f^(k)coshk,
因此:
u^(k,y)=f^(k)cosh(ky)+(g^(k)−f^(k)coshksinhk)sinh(ky).
\hat{u}(k, y) = \hat{f}(k) \cosh(k y) + \left( \frac{\hat{g}(k) - \hat{f}(k) \cosh k}{\sinh k} \right) \sinh(k y).
u^(k,y)=f^(k)cosh(ky)+(sinhkg^(k)−f^(k)coshk)sinh(ky).
等价形式(更常用):
u^(k,y)=f^(k)sinh(k(1−y))sinhk+g^(k)sinh(ky)sinhk.
\hat{u}(k, y) = \hat{f}(k) \frac{\sinh(k(1 - y))}{\sinh k} + \hat{g}(k) \frac{\sinh(k y)}{\sinh k}.
u^(k,y)=f^(k)sinhksinh(k(1−y))+g^(k)sinhksinh(ky).
则 u(x,y) u(x, y) u(x,y) 为反 Fourier 变换:
u(x,y)=12π∫−∞∞[f^(k)sinh(k(1−y))sinhk+g^(k)sinh(ky)sinhk]eikxdk.
u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \hat{f}(k) \frac{\sinh(k(1 - y))}{\sinh k} + \hat{g}(k) \frac{\sinh(k y)}{\sinh k} \right] e^{i k x} dk.
u(x,y)=2π1∫−∞∞[f^(k)sinhksinh(k(1−y))+g^(k)sinhksinh(ky)]eikxdk.
(b) Dirichlet-Neumann 问题
对 x x x 进行 Fourier 变换:
∂2u^∂y2−k2u^=0,
\frac{\partial^2 \hat{u}}{\partial y^2} - k^2 \hat{u} = 0,
∂y2∂2u^−k2u^=0,
边界条件变换为:
u^(k,0)=f^(k),∂u^∂y(k,1)=g^(k).
\hat{u}(k, 0) = \hat{f}(k), \quad \frac{\partial \hat{u}}{\partial y}(k, 1) = \hat{g}(k).
u^(k,0)=f^(k),∂y∂u^(k,1)=g^(k).
ODE 通解同 (a):
u^(k,y)=A(k)cosh(ky)+B(k)sinh(ky).
\hat{u}(k, y) = A(k) \cosh(k y) + B(k) \sinh(k y).
u^(k,y)=A(k)cosh(ky)+B(k)sinh(ky).
应用边界条件:
- 在 y=0 y = 0 y=0: u^(k,0)=A(k)=f^(k)\hat{u}(k, 0) = A(k) = \hat{f}(k)u^(k,0)=A(k)=f^(k),
- 在 y=1 y = 1 y=1: ∂u^∂y(k,1)=kA(k)sinhk+kB(k)coshk=kf^(k)sinhk+kB(k)coshk=g^(k)\frac{\partial \hat{u}}{\partial y}(k, 1) = k A(k) \sinh k + k B(k) \cosh k = k \hat{f}(k) \sinh k + k B(k) \cosh k = \hat{g}(k)∂y∂u^(k,1)=kA(k)sinhk+kB(k)coshk=kf^(k)sinhk+kB(k)coshk=g^(k).
解得:
B(k)=g^(k)kcoshk−f^(k)tanhk,
B(k) = \frac{\hat{g}(k)}{k \cosh k} - \hat{f}(k) \tanh k,
B(k)=kcoshkg^(k)−f^(k)tanhk,
因此:
u^(k,y)=f^(k)cosh(ky)+(g^(k)kcoshk−f^(k)tanhk)sinh(ky).
\hat{u}(k, y) = \hat{f}(k) \cosh(k y) + \left( \frac{\hat{g}(k)}{k \cosh k} - \hat{f}(k) \tanh k \right) \sinh(k y).
u^(k,y)=f^(k)cosh(ky)+(kcoshkg^(k)−f^(k)tanhk)sinh(ky).
等价形式:
u^(k,y)=f^(k)cosh(k(1−y))coshk+g^(k)ksinh(ky)coshk.
\hat{u}(k, y) = \hat{f}(k) \frac{\cosh(k(1 - y))}{\cosh k} + \frac{\hat{g}(k)}{k} \frac{\sinh(k y)}{\cosh k}.
u^(k,y)=f^(k)coshkcosh(k(1−y))+kg^(k)coshksinh(ky).
则 u(x,y) u(x, y) u(x,y) 为:
u(x,y)=12π∫−∞∞[f^(k)cosh(k(1−y))coshk+g^(k)ksinh(ky)coshk]eikxdk.
u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \hat{f}(k) \frac{\cosh(k(1 - y))}{\cosh k} + \frac{\hat{g}(k)}{k} \frac{\sinh(k y)}{\cosh k} \right] e^{i k x} dk.
u(x,y)=2π1∫−∞∞[f^(k)coshkcosh(k(1−y))+kg^(k)coshksinh(ky)]eikxdk.
© Neumann 问题
对 x x x 进行 Fourier 变换:
∂2u^∂y2−k2u^=0,
\frac{\partial^2 \hat{u}}{\partial y^2} - k^2 \hat{u} = 0,
∂y2∂2u^−k2u^=0,
边界条件变换为:
∂u^∂y(k,0)=f^(k),∂u^∂y(k,1)=g^(k).
\frac{\partial \hat{u}}{\partial y}(k, 0) = \hat{f}(k), \quad \frac{\partial \hat{u}}{\partial y}(k, 1) = \hat{g}(k).
∂y∂u^(k,0)=f^(k),∂y∂u^(k,1)=g^(k).
ODE 通解同前:
u^(k,y)=A(k)cosh(ky)+B(k)sinh(ky).
\hat{u}(k, y) = A(k) \cosh(k y) + B(k) \sinh(k y).
u^(k,y)=A(k)cosh(ky)+B(k)sinh(ky).
导数:
∂u^∂y=kA(k)sinh(ky)+kB(k)cosh(ky).
\frac{\partial \hat{u}}{\partial y} = k A(k) \sinh(k y) + k B(k) \cosh(k y).
∂y∂u^=kA(k)sinh(ky)+kB(k)cosh(ky).
应用边界条件:
- 在 y=0 y = 0 y=0: ∂u^∂y(k,0)=kB(k)=f^(k)\frac{\partial \hat{u}}{\partial y}(k, 0) = k B(k) = \hat{f}(k)∂y∂u^(k,0)=kB(k)=f^(k),所以 B(k)=f^(k)k B(k) = \frac{\hat{f}(k)}{k} B(k)=kf^(k),
- 在 y=1 y = 1 y=1: ∂u^∂y(k,1)=kA(k)sinhk+kB(k)coshk=kA(k)sinhk+f^(k)coshk=g^(k)\frac{\partial \hat{u}}{\partial y}(k, 1) = k A(k) \sinh k + k B(k) \cosh k = k A(k) \sinh k + \hat{f}(k) \cosh k = \hat{g}(k)∂y∂u^(k,1)=kA(k)sinhk+kB(k)coshk=kA(k)sinhk+f^(k)coshk=g^(k).
解得:
A(k)=g^(k)−f^(k)coshkksinhk,
A(k) = \frac{\hat{g}(k) - \hat{f}(k) \cosh k}{k \sinh k},
A(k)=ksinhkg^(k)−f^(k)coshk,
因此:
u^(k,y)=(g^(k)−f^(k)coshkksinhk)cosh(ky)+f^(k)ksinh(ky).
\hat{u}(k, y) = \left( \frac{\hat{g}(k) - \hat{f}(k) \cosh k}{k \sinh k} \right) \cosh(k y) + \frac{\hat{f}(k)}{k} \sinh(k y).
u^(k,y)=(ksinhkg^(k)−f^(k)coshk)cosh(ky)+kf^(k)sinh(ky).
则 u(x,y) u(x, y) u(x,y) 为:
u(x,y)=12π∫−∞∞[g^(k)−f^(k)coshkksinhkcosh(ky)+f^(k)ksinh(ky)]eikxdk.
u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \frac{\hat{g}(k) - \hat{f}(k) \cosh k}{k \sinh k} \cosh(k y) + \frac{\hat{f}(k)}{k} \sinh(k y) \right] e^{i k x} dk.
u(x,y)=2π1∫−∞∞[ksinhkg^(k)−f^(k)coshkcosh(ky)+kf^(k)sinh(ky)]eikxdk.
条件: 对于解的存在,f f f 和 g g g 必须满足:
∫−∞∞f(x)dx=∫−∞∞g(x)dx,
\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} g(x) dx,
∫−∞∞f(x)dx=∫−∞∞g(x)dx,
即 f^(0)=g^(0)\hat{f}(0) = \hat{g}(0)f^(0)=g^(0),其中 f^(0)=∫−∞∞f(x)dx\hat{f}(0) = \int_{-\infty}^{\infty} f(x) dxf^(0)=∫−∞∞f(x)dx,g^(0)=∫−∞∞g(x)dx\hat{g}(0) = \int_{-\infty}^{\infty} g(x) dxg^(0)=∫−∞∞g(x)dx。此条件源于 Laplace 方程 Neumann 问题的兼容性条件(散度定理要求边界上外向法向导数的积分为零)。当此条件满足时,解在加常数意义下唯一(即 u(x,y) u(x, y) u(x,y) 可加上任意常数)。
注意: 在 © 的 Fourier 积分中,当 k=0 k = 0 k=0 时,表达式需单独处理(通过极限或常数调整),但上述形式在 k≠0 k \neq 0 k=0 时有效,且当兼容性条件满足时,解在 k=0 k = 0 k=0 处有定义。