当前位置: 首页 > news >正文

疏锦行Python打卡 DAY 54 Inception网络及其思考

import torch
import torch.nn as nnclass Inception(nn.Module):def __init__(self, in_channels):"""Inception模块初始化,实现多尺度特征并行提取与融合参数:in_channels: 输入特征图的通道数"""super(Inception, self).__init__()# 1x1卷积分支:降维并提取通道间特征关系# 减少后续卷积的计算量,同时保留局部特征信息self.branch1x1 = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=1),  # 降维至64通道nn.ReLU()  # 引入非线性激活)# 3x3卷积分支:通过1x1卷积降维后使用3x3卷积捕捉中等尺度特征# 先降维减少计算量,再进行空间特征提取self.branch3x3 = nn.Sequential(nn.Conv2d(in_channels, 96, kernel_size=1),  # 降维至96通道nn.ReLU(),nn.Conv2d(96, 128, kernel_size=3, padding=1),  # 3x3卷积,保持空间尺寸不变nn.ReLU())# 5x5卷积分支:通过1x1卷积降维后使用5x5卷积捕捉大尺度特征# 较大的感受野用于提取更全局的结构信息self.branch5x5 = nn.Sequential(nn.Conv2d(in_channels, 16, kernel_size=1),  # 大幅降维至16通道nn.ReLU(),nn.Conv2d(16, 32, kernel_size=5, padding=2),  # 5x5卷积,保持空间尺寸不变nn.ReLU())# 池化分支:通过池化操作保留全局信息并降维# 增强特征的平移不变性self.branch_pool = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),  # 3x3最大池化,保持尺寸nn.Conv2d(in_channels, 32, kernel_size=1),  # 降维至32通道nn.ReLU())def forward(self, x):"""前向传播函数,并行计算四个分支并在通道维度拼接参数:x: 输入特征图,形状为[batch_size, in_channels, height, width]返回:拼接后的特征图,形状为[batch_size, 256, height, width]"""# 注意,这里是并行计算四个分支branch1x1 = self.branch1x1(x)  # 输出形状: [batch_size, 64, height, width]branch3x3 = self.branch3x3(x)  # 输出形状: [batch_size, 128, height, width]branch5x5 = self.branch5x5(x)  # 输出形状: [batch_size, 32, height, width]branch_pool = self.branch_pool(x)  # 输出形状: [batch_size, 32, height, width]# 在通道维度(dim=1)拼接四个分支的输出# 总通道数: 64 + 128 + 32 + 32 = 256outputs = [branch1x1, branch3x3, branch5x5, branch_pool]return torch.cat(outputs, dim=1)model = Inception(in_channels=64)
input = torch.randn(32, 64, 28, 28)
output = model(input)
print(f"输入形状: {input.shape}")
print(f"输出形状: {output.shape}")  class InceptionNet(nn.Module):def __init__(self, num_classes=10):super(InceptionNet, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))self.inception1 = Inception(64)self.inception2 = Inception(256)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(256, num_classes)def forward(self, x):x = self.conv1(x)x = self.inception1(x)x = self.inception2(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return x# 创建网络实例
model = InceptionNet()
# 创建一个随机输入张量,模拟图像数据,这里假设输入图像是3通道,尺寸为224x224
input_tensor = torch.randn(1, 3, 224, 224)
# 前向传播
output = model(input_tensor)
print(output.shape)import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader# 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化
])# 加载CIFAR-10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True)testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
testloader = DataLoader(testset, batch_size=128, shuffle=False)# 定义含空洞卷积的CNN模型
class SimpleCNNWithDilation(nn.Module):def __init__(self):super(SimpleCNNWithDilation, self).__init__()# 第一层:普通3×3卷积,捕捉基础特征self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)  # 第二层:空洞卷积,dilation=2,感受野扩大(等效5×5普通卷积感受野)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=2, dilation=2)  # 第三层:普通3×3卷积,恢复特征对齐self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)  self.pool = nn.MaxPool2d(2, 2)  # 池化层self.relu = nn.ReLU()# 全连接层,根据CIFAR-10尺寸计算:32×32→池化后16×16→...→最终特征维度需匹配self.fc1 = nn.Linear(64 * 8 * 8, 256)  self.fc2 = nn.Linear(256, 10)  def forward(self, x):# 输入: [batch, 3, 32, 32]x = self.conv1(x)  # [batch, 16, 32, 32]x = self.relu(x)x = self.pool(x)   # [batch, 16, 16, 16]x = self.conv2(x)  # [batch, 32, 16, 16](dilation=2 + padding=2 保持尺寸)x = self.relu(x)x = self.pool(x)   # [batch, 32, 8, 8]x = self.conv3(x)  # [batch, 64, 8, 8]x = self.relu(x)x = x.view(-1, 64 * 8 * 8)  # 展平x = self.fc1(x)x = self.relu(x)x = self.fc2(x)return x# 初始化模型、损失函数、优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SimpleCNNWithDilation().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 训练函数
def train(epoch):model.train()running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:  # 每100个batch打印一次print(f'Epoch: {epoch + 1}, Batch: {i + 1}, Loss: {running_loss / 100:.3f}')running_loss = 0.0# 测试函数
def test():model.eval()correct = 0total = 0with torch.no_grad():for data in testloader:images, labels = data[0].to(device), data[1].to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy on test set: {100 * correct / total:.2f}%')# 训练&测试流程
for epoch in range(5):  # 简单跑5个epoch示例train(epoch)test()

打卡:@浙大疏锦行

http://www.dtcms.com/a/271058.html

相关文章:

  • HTML + CSS + JavaScript
  • 字体 Unicode 区块字符展示 PDF 生成器
  • Ubuntu重装系统后ssh连接不上(遇到 ​​“Unit ssh.service not found“​​ 错误)
  • kubernetes存储入门
  • Spring Boot + Vue.js 全栈开发:从前后端分离到高效部署,打造你的MVP利器!
  • 【05】MFC入门到精通——MFC 为对话框中的控件添加变量 和 数据交换和检验
  • 【01】MFC入门到精通—— MFC新建基于对话框的项目 介绍(工作界面、资源视图 、类视图)
  • Flink-1.19.0源码详解6-JobGraph生成-后篇
  • AJAX总结
  • Flink1.20.1集成Paimon遇到的问题
  • Electron 应用打包全指南
  • 机器学习模型在C++平台的部署
  • 基于 Redis 实现高并发滑动窗口限流:Java实战与深度解析
  • 开始读 PostgreSQL 16 Administration Cookbook
  • 深度学习 最简单的神经网络 线性回归网络
  • ArtifactsBench: 弥合LLM 代码生成评估中的视觉交互差距
  • 论文解析篇 | YOLOv12:以注意力机制为核心的实时目标检测算法
  • 腾讯云COS,阿里云OSS对象存储服务-删除操作的响应码204
  • 汽车智能化2.0引爆「万亿蛋糕」,谁在改写游戏规则?
  • 通用游戏前端架构设计思考
  • VSCode配置Cline插件调用MCP服务实现任务自动化
  • 旅游管理实训室建设的关键要点探讨
  • 向量空间 线性代数
  • 软件测试偏技术方向学习路线是怎样的?
  • 安装nvm管理node.js,详细安装使用教程和详细命令
  • Spring Boot微服务中集成gRPC实践经验分享
  • 【每日算法】专题六_模拟
  • 全球发展币GDEV:从中国出发,走向全球的数字发展合作蓝图
  • 2 STM32单片机-蜂鸣器驱动
  • 【vLLM 学习】Eagle