一个猜想不等式的推广
一个猜想不等式的推广
设 m ⩾ 3 m \geqslant 3 m⩾3 为正整数,$a_1, a_2, \cdots, a_m $ 为正实数,则对任何实数 γ > 0 \gamma > 0 γ>0 有
∑ i = 1 m ( a i m a i m + ( m γ − 1 ) ∏ j = 1 m a j ) 1 γ ⩾ 1 , \sum_{i = 1}^{m} \left( \frac{a_i^m}{a_i^m + (m^\gamma - 1) \prod\limits_{\substack{j = 1 }}^{m} a_j} \right)^{\frac{1}{\gamma}} \geqslant 1, i=1∑m aim+(mγ−1)j=1∏majaim γ1⩾1,
当且仅当 a 1 = a 2 = ⋯ = a m a_1 = a_2 = \cdots = a_m a1=a2=⋯=am 时,等号成立.
解
令 x i = ( m γ − 1 ) ⋅ ∏ j = 1 m a j a i m x_{i} = \left(m^{\gamma}-1\right) \cdot \frac{\prod\limits_{j=1}^{m} a_{j}}{a_{i}^{m}} xi=(mγ−1)⋅aimj=1∏maj( i = 1 , 2 , ⋯ , m i=1,2,\cdots,m i=1,2,⋯,m),则 ∏ i = 1 m x i = ( m γ − 1 ) m \prod\limits_{i=1}^{m} x_{i} = \left(m^{\gamma}-1\right)^{m} i=1∏mxi=(mγ−1)m
原不等式等价于证明:
∑ i = 1 m ( 1 + x i ) − 1 γ ≥ 1 , \sum_{i=1}^{m} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}} \geq 1, i=1∑m(1+xi)−γ1≥1,
其中约束条件为 ∏ i = 1 m x i = ( m γ − 1 ) m \prod\limits_{i=1}^{m} x_{i} = \left(m^{\gamma}-1\right)^{m} i=1∏mxi=(mγ−1)m。
构造拉格朗日函数:
L = ∑ i = 1 m ( 1 + x i ) − 1 γ + λ ( ∏ i = 1 m x i − ( m γ − 1 ) m ) \mathcal{L}=\sum_{i=1}^{m} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}} + \lambda \left( \prod_{i=1}^{m} x_{i} - \left(m^{\gamma}-1\right)^{m} \right) L=i=1∑m(1+xi)−γ1+λ(i=1∏mxi−(mγ−1)m)
有:
{ ∂ f ∂ x i = − 1 γ ( 1 + x i ) − 1 γ − 1 + λ ⋅ ∏ j = 1 m x j x i = 0 ( i = 1 , 2 , ⋯ , m ) , ∂ f ∂ λ = ∏ i = 1 m x i − ( m γ − 1 ) m = 0. \begin{cases} \frac{\partial f}{\partial x_{i}} = -\frac{1}{\gamma} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}-1} + \lambda \cdot \frac{\prod_{j=1}^{m} x_{j}}{x_{i}} = 0 \quad (i=1,2,\cdots,m), \\ \frac{\partial f}{\partial \lambda} = \prod_{i=1}^{m} x_{i} - \left(m^{\gamma}-1\right)^{m} = 0. \end{cases} {∂xi∂f=−γ1(1+xi)−γ1−1+λ⋅xi∏j=1mxj=0(i=1,2,⋯,m),∂λ∂f=∏i=1mxi−(mγ−1)m=0.
化简第一个方程,两边同乘 γ x i / ∏ j = 1 m x j \gamma x_{i} / \prod_{j=1}^{m} x_{j} γxi/∏j=1mxj,得:
x i ( 1 + x i ) − 1 γ − 1 = γ λ ( 常数 ) , x_{i} \left(1 + x_{i}\right)^{-\frac{1}{\gamma}-1} = \gamma \lambda \quad (\text{常数}), xi(1+xi)−γ1−1=γλ(常数),
即所有 x i x_{i} xi满足:
x 1 ( 1 + x 1 ) − 1 γ − 1 = x 2 ( 1 + x 2 ) − 1 γ − 1 = ⋯ = x m ( 1 + x m ) − 1 γ − 1 . (1) x_{1} \left(1 + x_{1}\right)^{-\frac{1}{\gamma}-1} = x_{2} \left(1 + x_{2}\right)^{-\frac{1}{\gamma}-1} = \cdots = x_{m} \left(1 + x_{m}\right)^{-\frac{1}{\gamma}-1}. \tag{1} x1(1+x1)−γ1−1=x2(1+x2)−γ1−1=⋯=xm(1+xm)−γ1−1.(1)
构造函数: D ( s ) = s ( 1 + s ) − 1 γ − 1 D(s)= s(1+s)^{-\frac{1}{\gamma}-1} D(s)=s(1+s)−γ1−1
可知,解分为两种情况:
当所有 x i x_{i} xi相等时,容易得到满足。
**当部分 x i x_{i} xi小于 γ \gamma γ,其余大于 γ \gamma γ**时,
设存在 l ∈ [ 1 , m − 1 ] l \in [1, m-1] l∈[1,m−1](正整数),使得:
-
l l l个变量 x = x n 1 = ⋯ = x n l ∈ ( 0 , γ ) x = x_{n_{1}} = \cdots = x_{n_{l}} \in (0, \gamma) x=xn1=⋯=xnl∈(0,γ),
-
剩余 m − l m-l m−l个变量 y = x n l + 1 = ⋯ = x n m ∈ ( γ , + ∞ ) y = x_{n_{l+1}} = \cdots = x_{n_{m}} \in (\gamma, +\infty) y=xnl+1=⋯=xnm∈(γ,+∞),
且满足 D ( x ) = D ( y ) D(x) = D(y) D(x)=D(y)(即 x ( 1 + x ) − 1 γ − 1 = y ( 1 + y ) − 1 γ − 1 x(1+x)^{-\frac{1}{\gamma}-1} = y(1+y)^{-\frac{1}{\gamma}-1} x(1+x)−γ1−1=y(1+y)−γ1−1),以及约束 x l y m − l = ( m γ − 1 ) m x^{l} y^{m-l} = \left(m^{\gamma}-1\right)^{m} xlym−l=(mγ−1)m。 -
当 l ∈ ( γ γ + 1 m , m − 1 ] l \in (\frac{\gamma}{\gamma+1}m, m-1] l∈(γ+1γm,m−1]时,方程组无解;
-
当 l ∈ [ 1 , γ γ + 1 m ] l \in [1, \frac{\gamma}{\gamma+1}m] l∈[1,γ+1γm]时,构造函数
H ( x , y ) = l ( 1 + x ) − 1 γ + ( m − l ) ( 1 + y ) − 1 γ H(x, y) = l(1+x)^{-\frac{1}{\gamma}} + (m-l)(1+y)^{-\frac{1}{\gamma}} H(x,y)=l(1+x)−γ1+(m−l)(1+y)−γ1
其为下调和函数,最小值在边界取得。
边界分析表明:
- 当 x → 0 + x \to 0^+ x→0+时, h → l ≥ 1 h \to l \geq 1 h→l≥1(因 l ≥ 1 l \geq 1 l≥1),
- 当 x = γ x = \gamma x=γ时, h ≥ m ( 1 + γ ) − 1 γ > 1 h \geq m(1+\gamma)^{-\frac{1}{\gamma}} > 1 h≥m(1+γ)−γ1>1(因 ( 1 + s ) 1 s < e (1+s)^{\frac{1}{s}} < e (1+s)s1<e,故 ( 1 + γ ) − 1 γ > e − 1 (1+\gamma)^{-\frac{1}{\gamma}} > e^{-1} (1+γ)−γ1>e−1,且 m ≥ 3 m \geq 3 m≥3)。
故:
设 m ⩾ 3 m \geqslant 3 m⩾3 为正整数,$a_1, a_2, \cdots, a_m $ 为正实数,则对任何实数 γ > 0 \gamma > 0 γ>0 有
∑ i = 1 m ( a i m a i m + ( m γ − 1 ) ∏ j = 1 m a j ) 1 γ ⩾ 1 , \sum_{i = 1}^{m} \left( \frac{a_i^m}{a_i^m + (m^\gamma - 1) \prod\limits_{\substack{j = 1 }}^{m} a_j} \right)^{\frac{1}{\gamma}} \geqslant 1, i=1∑m aim+(mγ−1)j=1∏majaim γ1⩾1,
当且仅当 a 1 = a 2 = ⋯ = a m a_1 = a_2 = \cdots = a_m a1=a2=⋯=am 时,等号成立.加粗样式