基于拉普拉斯变换与分离变量法的热传导方程求解
题目
问题3. 求解热方程的初边值问题
{ u t = k u x x t > 0 , 0 < x < ∞ u ∣ t = 0 = g ( x ) u ∣ x = 0 = h ( t ) \begin{cases} u_t = k u_{xx} & t > 0, \, 0 < x < \infty \\ u|_{t=0} = g(x) \\ u|_{x=0} = h(t) \end{cases} ⎩⎪⎨⎪⎧ut=kuxxu∣t=0=g(x)u∣x=0=h(t)t>0,0<x<∞
其中
g ( x ) = 0 , h ( t ) = { 1 t < 1 , 0 t ≥ 1 ; g(x) = 0, \quad h(t) = \begin{cases} 1 & t < 1, \\ 0 & t \geq 1; \end{cases} g(x)=0,h(t)={10t<1,t≥1;
g ( x ) = { 1 − x x < 1 , 0 x ≥ 1 , h ( t ) = 0 ; g(x) = \begin{cases} 1 - x & x < 1, \\ 0 & x \geq 1, \end{cases} \quad h(t) = 0; g(x)={1−x0x<1,x≥1,h(t)=0;
g ( x ) = e − a x , h ( t ) = 0 ; g(x) = e^{-ax}, \quad h(t) = 0; g(x)=e−ax,h(t)=0;
g ( x ) = e − a x 2 , h ( t ) = 0 ; g(x) = e^{-ax^2}, \quad h(t) = 0; g(x)=e−ax2,h(t)=0;
g ( x ) = x 2 e − a x 2 , h ( t ) = 0 ; g(x) = x^2 e^{-ax^2}, \quad h(t) = 0; g(x)=x2e−ax2,h(t)=0;
g ( x ) = 1 , h ( t ) = 0 ; g(x) = 1, \quad h(t) = 0; g(x)=1,h(t)=0;
g ( x ) = { 1 x < 1 , 0 x ≥ 1 , h ( t ) = 0 ; g(x) = \begin{cases} 1 & x < 1, \\ 0 & x \geq 1, \end{cases} \quad h(t) = 0; g(x)={10x<1,x≥1,h(t)=0;
g ( x ) = { 1 − x 2 x < 1 , 0 x ≥ 1 , h ( t ) = 0 ; g(x) = \begin{cases} 1 - x^2 & x < 1, \\ 0 & x \geq 1, \end{cases} \quad h(t) = 0; g(x)={1−x20x<1,x≥1,h(t)=0;
g ( x ) = x e − a x , h ( t ) = 0 ; g(x) = x e^{-ax}, \quad h(t) = 0; g(x)=xe−ax,h(t)=0;
g ( x ) = x e − a x 2 , h ( t ) = 0 ; g(x) = x e^{-ax^2}, \quad h(t) = 0; g(x)=xe−ax2,h(t)=0;
g ( x ) = 0 , h ( t ) = 1 ; g(x) = 0, \quad h(t) = 1; g(x)=0,h(t)=1;
以下是对不同初始 - 边界条件组合下热传导方程初边值问题的求解过程,部分积分和逆变换的计算可能需要用到较复杂的数学技巧和公式。在实际应用中,也可以根据具体情况选择合适的数值方法进行求解。
情况一: g ( x ) = 0 g(x) = 0 g(x)=0, h ( t ) = { 1 , t < 1 0 , t ≥ 1 h(t)=\begin{cases}1, &t < 1\\0, &t\geq1\end{cases} h(t)={1,0,t<1t≥1
- 拉普拉斯变换
- 设 U ( x , s ) = L [ u ( x , t ) ] = ∫ 0 + ∞ u ( x , t ) e − s t d t U(x,s)=\mathcal{L}[u(x,t)]=\int_{0}^{+\infty}u(x,t)e^{-st}dt U(x,s)=L[u(x,t)]=∫0+∞u(x,t)e−stdt,对 u t = k u x x u_t = ku_{xx} ut=kuxx两边关于 t t t进行拉普拉斯变换:
- 由 L [ u t ( x , t ) ] = s U ( x , s ) − u ( x , 0 ) \mathcal{L}[u_t(x,t)] = sU(x,s)-u(x,0) L[ut(x,t)]=sU(x,s)−u(x,0)(因为 u ∣ t = 0 = g ( x ) = 0 u|_{t = 0}=g(x)=0 u∣t=0=g(x)=0)和 L [ u x x ( x , t ) ] = U x x ( x , s ) \mathcal{L}[u_{xx}(x,t)] = U_{xx}(x,s) L[uxx(x,t)]=Uxx(x,s),得到 k U x x ( x , s ) − s U ( x , s ) = 0 kU_{xx}(x,s)-sU(x,s)=0 kUxx(x,s)−sU(x,s)=0。
- 这是一个二阶常系数线性齐次偏微分方程,其特征方程为 k λ 2 − s = 0 k\lambda^{2}-s = 0 kλ2−s=0,解得 λ = ± s k \lambda=\pm\sqrt{\frac{s}{k}} λ=±ks,所以通解为 U ( x , s ) = A ( s ) e − s k x + B ( s ) e s k x U(x,s)=A(s)e^{-\sqrt{\frac{s}{k}}x}+B(s)e^{\sqrt{\frac{s}{k}}x} U(x,s)=A(s)e−ksx+B(s)eksx。
- 对边界条件 u ∣ x = 0 = h ( t ) u|_{x = 0}=h(t) u∣x=0=h(t)进行拉普拉斯变换,得 U ( 0 , s ) = L [ h ( t ) ] U(0,s)=\mathcal{L}[h(t)] U(0,s)=L[h(t)]。
- 已知 h ( t ) = { 1 , t < 1 0 , t ≥ 1 h(t)=\begin{cases}1, &t < 1\\0, &t\geq1\end{cases} h(t)={1,0,t<1t≥1,根据拉普拉斯变换公式 L [ H ( t − a ) ] = e − a s s \mathcal{L}[H(t - a)]=\frac{e^{-as}}{s} L[H(t−a)]=se−as( H ( t ) H(t) H(t)为单位阶跃函数), L [ h ( t ) ] = 1 − e − s s \mathcal{L}[h(t)]=\frac{1 - e^{-s}}{s} L[h(t)]=s1−e−s。
- 当 x → + ∞ x\rightarrow+\infty x→+∞时,为保证 U ( x , s ) U(x,s) U(x,s)有界, B ( s ) = 0 B(s) = 0 B(s)=0,则 U ( x , s ) = A ( s ) e − s k x U(x,s)=A(s)e^{-\sqrt{\frac{s}{k}}x} U(x,s)=A(s)e−ksx。
- 把 x = 0 x = 0 x=0代入 U ( x , s ) U(x,s) U(x,s),由 U ( 0 , s ) = A ( s ) = 1 − e − s s U(0,s)=A(s)=\frac{1 - e^{-s}}{s} U(0,s)=A(s)=s1−e−s,所以 U ( x , s ) = 1 − e − s s e − s k x U(x,s)=\frac{1 - e^{-s}}{s}e^{-\sqrt{\frac{s}{k}}x} U(x,s)=s1−e−se−ksx。
- 设 U ( x , s ) = L [ u ( x , t ) ] = ∫ 0 + ∞ u ( x , t ) e − s t d t U(x,s)=\mathcal{L}[u(x,t)]=\int_{0}^{+\infty}u(x,t)e^{-st}dt U(x,s)=L[u(x,t)]=∫0+∞u(x,t)e−stdt,对 u t = k u x x u_t = ku_{xx} ut=kuxx两边关于 t t t进行拉普拉斯变换:
- 拉普拉斯逆变换
- 根据拉普拉斯逆变换的线性性质 u ( x , t ) = L − 1 [ 1 − e − s s e − s k x ] = L − 1 [ 1 s e − s k x ] − L − 1 [ e − s s e − s k x ] u(x,t)=\mathcal{L}^{-1}\left[\frac{1 - e^{-s}}{s}e^{-\sqrt{\frac{s}{k}}x}\right]=\mathcal{L}^{-1}\left[\frac{1}{s}e^{-\sqrt{\frac{s}{k}}x}\right]-\mathcal{L}^{-1}\left[\frac{e^{-s}}{s}e^{-\sqrt{\frac{s}{k}}x}\right] u(x,t)=L−1[s1−e−se−ksx]=L−1[s1e−ksx]−L−1[se−se−ksx]。
- 已知 L − 1 [ 1 s e − α s ] = erfc ( α 2 t ) \mathcal{L}^{-1}\left[\frac{1}{s}e^{-\alpha\sqrt{s}}\right]=\text{erfc}\left(\frac{\alpha}{2\sqrt{t}}\right) L−1[s1e−αs]=erfc(2tα),令 α = x k \alpha=\sqrt{\frac{x}{k}} α=kx,则 L − 1 [ 1 s e − s k x ] = erfc ( x 2 k t ) \mathcal{L}^{-1}\left[\frac{1}{s}e^{-\sqrt{\frac{s}{k}}x}\right]=\text{erfc}\left(\frac{x}{2\sqrt{kt}}\right) L−1[s1e−ksx]=erfc(2ktx)。
- 由拉普拉斯变换的时移性质 L − 1 [ F ( s ) e − a s ] = H ( t − a ) f ( t − a ) \mathcal{L}^{-1}[F(s)e^{-as}]=H(t - a)f(t - a) L−1[F(s)e−as]=H(t−a)f(t−a),这里 F ( s ) = 1 s e − s k x F(s)=\frac{1}{s}e^{-\sqrt{\frac{s}{k}}x} F(s)=s1e−ksx, a = 1 a = 1 a=1, f ( t ) = erfc ( x 2 k t ) f(t)=\text{erfc}\left(\frac{x}{2\sqrt{kt}}\right) f(t)=erfc(2ktx),所以 L − 1 [ e − s s e − s k x ] = H ( t − 1 ) erfc ( x 2 k ( t − 1 ) ) \mathcal{L}^{-1}\left[\frac{e^{-s}}{s}e^{-\sqrt{\frac{s}{k}}x}\right]=H(t - 1)\text{erfc}\left(\frac{x}{2\sqrt{k(t - 1)}}\right) L−1[se−se−ksx]=H(t−1)erfc(2k(t−1)x)。
- 因此, u ( x , t ) = erfc ( x 2 k t ) − H ( t − 1 ) erfc ( x 2 k ( t − 1 ) ) u(x,t)=\text{erfc}\left(\frac{x}{2\sqrt{kt}}\right)-H(t - 1)\text{erfc}\left(\frac{x}{2\sqrt{k(t - 1)}}\right) u(x,t)=erfc(2ktx)−H(t−1)erfc(2k(t−1)x)。
情况二: g ( x ) = { 1 , x < 1 0 , x ≥ 1 g(x)=\begin{cases}1, &x < 1\\0, &x\geq1\end{cases} g(x)={1,0,x<1x≥1, h ( t ) = 0 h(t) = 0 h(t)=0
- 分离变量法
- 设 u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u(x,t)=X(x)T(t),代入 u t = k u x x u_t = ku_{xx} ut=kuxx得 T ′ ( t ) k T ( t ) = X ′ ′ ( x ) X ( x ) = − λ \frac{T'(t)}{kT(t)}=\frac{X''(x)}{X(x)}=-\lambda kT(t)T′(t)=X(x)X′′(x)=−λ。
- 得到两个常微分方程: T ′ ( t ) + k λ T ( t ) = 0 T'(t)+k\lambda T(t)=0 T′(t)+kλT(t)=0和 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x)+\lambda X(x)=0 X′′(x)+λX(x)=0。
- 对于 X ( x ) X(x) X(x)的方程,结合边界条件 u ∣ x = 0 = 0 u|_{x = 0}=0 u∣x=0=0(因为 h ( t ) = 0 h(t) = 0 h(t)=0),即 X ( 0 ) = 0 X(0)=0 X(0)=0。
- 当 λ > 0 \lambda>0 λ>0时, X ( x ) = A sin ( λ x ) + B cos ( λ x ) X(x)=A\sin(\sqrt{\lambda}x)+B\cos(\sqrt{\lambda}x) X(x)=Asin(λx)+Bcos(λx),由 X ( 0 ) = 0 X(0)=0 X(0)=0得 B = 0 B = 0 B=0,所以 X ( x ) = A sin ( λ x ) X(x)=A\sin(\sqrt{\lambda}x) X(x)=Asin(λx)。
- 对于 T ( t ) T(t) T(t)的方程, T ( t ) = C e − k λ t T(t)=C e^{-k\lambda t} T(t)=Ce−kλt。
- 再由初始条件 u ∣ t = 0 = g ( x ) u|_{t = 0}=g(x) u∣t=0=g(x),即 ∑ n = 1 ∞ A n sin ( λ n x ) = g ( x ) \sum_{n = 1}^{\infty}A_n\sin(\sqrt{\lambda_n}x)=g(x) n=1∑∞Ansin(λnx)=g(x),其中 λ n = ( n π 2 ) 2 \lambda_n=\left(\frac{n\pi}{2}\right)^2 λn=(2nπ)2( n = 1 , 3 , 5 , ⋯ n = 1,3,5,\cdots n=1,3,5,⋯), A n = 2 L ∫ 0 L g ( x ) sin ( λ n x ) d x A_n=\frac{2}{L}\int_{0}^{L}g(x)\sin(\sqrt{\lambda_n}x)dx An=L2∫0Lg(x)sin(λnx)dx(这里 L → + ∞ L\rightarrow+\infty L→+∞)。
- A n = ∫ 0 1 sin ( n π 2 x ) d x = [ − 2 n π cos ( n π 2 x ) ] 0 1 = 2 n π ( 1 − ( − 1 ) n + 1 2 ) A_n=\int_{0}^{1}\sin(\frac{n\pi}{2}x)dx=\left[-\frac{2}{n\pi}\cos(\frac{n\pi}{2}x)\right]_0^1=\frac{2}{n\pi}(1 - (- 1)^{\frac{n + 1}{2}}) An=∫01sin(2nπx)dx=[−nπ2cos(2nπx)]01=nπ2(1−(−1)2n+1)。
- 所以 u ( x , t ) = ∑ n = 1 , 3 , 5 , ⋯ ∞ 2 n π ( 1 − ( − 1 ) n + 1 2 ) e − k ( n π 2 ) 2 t sin ( n π 2 x ) u(x,t)=\sum_{n = 1,3,5,\cdots}^{\infty}\frac{2}{n\pi}(1 - (- 1)^{\frac{n + 1}{2}})e^{-k(\frac{n\pi}{2})^2t}\sin(\frac{n\pi}{2}x) u(x,t)=n=1,3,5,⋯∑∞nπ2(1−(−1)2n+1)e−k(2nπ)2tsin(2nπx)。
情况三: g ( x ) = { 1 − x , x < 1 0 , x ≥ 1 g(x)=\begin{cases}1 - x, &x < 1\\0, &x\geq1\end{cases} g(x)={1−x,0,x<1x≥1, h ( t ) = 0 h(t) = 0 h(t)=0
- 分离变量法
- 同样设 u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u(x,t)=X(x)T(t),得到 T ′ ( t ) + k λ T ( t ) = 0 T'(t)+k\lambda T(t)=0 T′(t)+kλT(t)=0和 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x)+\lambda X(x)=0 X′′(x)+λX(x)=0, X ( 0 ) = 0 X(0)=0 X(0)=0。
- 当 λ > 0 \lambda>0 λ>0, X ( x ) = A sin ( λ x ) X(x)=A\sin(\sqrt{\lambda}x) X(x)=Asin(λx), T ( t ) = C e − k λ t T(t)=C e^{-k\lambda t} T(t)=Ce−kλt。
- 由初始条件 u ∣ t = 0 = g ( x ) u|_{t = 0}=g(x) u∣t=0=g(x), ∑ n = 1 ∞ A n sin ( λ n x ) = g ( x ) \sum_{n = 1}^{\infty}A_n\sin(\sqrt{\lambda_n}x)=g(x) n=1∑∞Ansin(λnx)=g(x), λ n = ( n π 2 ) 2 \lambda_n=\left(\frac{n\pi}{2}\right)^2 λn=(2nπ)2( n = 1 , 3 , 5 , ⋯ n = 1,3,5,\cdots n=1,3,5,⋯)。
- A n = 2 ∫ 0 1 ( 1 − x ) sin ( n π 2 x ) d x A_n = 2\int_{0}^{1}(1 - x)\sin(\frac{n\pi}{2}x)dx An=2∫01(1−x)sin(2nπx)dx
- 利用分部积分法:设 u = 1 − x u = 1 - x u=1−x, d v = sin ( n π 2 x ) d x dv=\sin(\frac{n\pi}{2}x)dx dv=sin(2nπx)dx,则 d u = − d x du=-dx du=−dx, v = − 2 n π cos ( n π 2 x ) v=-\frac{2}{n\pi}\cos(\frac{n\pi}{2}x) v=−nπ2cos(2nπx)。
- A n = 2 [ − ( 1 − x ) 2 n π cos ( n π 2 x ) ∣ 0 1 − 2 n π ∫ 0 1 cos ( n π 2 x ) d x ] A_n=2\left[-(1 - x)\frac{2}{n\pi}\cos(\frac{n\pi}{2}x)\big|_0^1-\frac{2}{n\pi}\int_{0}^{1}\cos(\frac{n\pi}{2}x)dx\right] An=2[−(1−x)nπ2cos(2nπx)∣∣01−nπ2∫01cos(2nπx)dx]
- = 2 [ 2 n π − 4 n 2 π 2 sin ( n π 2 ) ] = 4 n π ( 1 − ( − 1 ) n + 1 2 n π / 2 ) =2\left[\frac{2}{n\pi}-\frac{4}{n^{2}\pi^{2}}\sin(\frac{n\pi}{2})\right]=\frac{4}{n\pi}(1-\frac{(-1)^{\frac{n + 1}{2}}}{n\pi/2}) =2[nπ2−n2π24sin(2nπ)]=nπ4(1−nπ/2(−1)2n+1)。
- 所以 u ( x , t ) = ∑ n = 1 , 3 , 5 , ⋯ ∞ 4 n π ( 1 − ( − 1 ) n + 1 2 n π / 2 ) e − k ( n π 2 ) 2 t sin ( n π 2 x ) u(x,t)=\sum_{n = 1,3,5,\cdots}^{\infty}\frac{4}{n\pi}(1-\frac{(-1)^{\frac{n + 1}{2}}}{n\pi/2})e^{-k(\frac{n\pi}{2})^2t}\sin(\frac{n\pi}{2}x) u(x,t)=n=1,3,5,⋯∑∞nπ4(1−nπ/2(−1)2n+1)e−k(2nπ)2tsin(2nπx)。
情况四: g ( x ) = e − a x g(x)=e^{-ax} g(x)=e−ax, h ( t ) = 0 h(t) = 0 h(t)=0
- 积分变换法(傅里叶余弦变换)
- 设 U c ( ω , t ) = ∫ 0 + ∞ u ( x , t ) cos ( ω x ) d x U_c(\omega,t)=\int_{0}^{+\infty}u(x,t)\cos(\omega x)dx Uc(ω,t)=∫0+∞u(x,t)cos(ωx)dx,对 u t = k u x x u_t = ku_{xx} ut=kuxx两边关于 t t t进行傅里叶余弦变换:
- ∂ U c ( ω , t ) ∂ t = − k ω 2 U c ( ω , t ) \frac{\partial U_c(\omega,t)}{\partial t}=-k\omega^{2}U_c(\omega,t) ∂t∂Uc(ω,t)=−kω2Uc(ω,t),其解为 U c ( ω , t ) = C ( ω ) e − k ω 2 t U_c(\omega,t)=C(\omega)e^{-k\omega^{2}t} Uc(ω,t)=C(ω)e−kω2t。
- 由初始条件 u ∣ t = 0 = g ( x ) = e − a x u|_{t = 0}=g(x)=e^{-ax} u∣t=0=g(x)=e−ax, U c ( ω , 0 ) = ∫ 0 + ∞ e − a x cos ( ω x ) d x U_c(\omega,0)=\int_{0}^{+\infty}e^{-ax}\cos(\omega x)dx Uc(ω,0)=∫0+∞e−axcos(ωx)dx。
- 根据积分公式 ∫ 0 + ∞ e − a x cos ( ω x ) d x = a a 2 + ω 2 \int_{0}^{+\infty}e^{-ax}\cos(\omega x)dx=\frac{a}{a^{2}+\omega^{2}} ∫0+∞e−axcos(ωx)dx=a2+ω2a( a > 0 a>0 a>0),所以 C ( ω ) = a a 2 + ω 2 C(\omega)=\frac{a}{a^{2}+\omega^{2}} C(ω)=a2+ω2a。
- 则 U c ( ω , t ) = a a 2 + ω 2 e − k ω 2 t U_c(\omega,t)=\frac{a}{a^{2}+\omega^{2}}e^{-k\omega^{2}t} Uc(ω,t)=a2+ω2ae−kω2t。
- 进行傅里叶余弦逆变换 u ( x , t ) = 1 π ∫ 0 + ∞ a a 2 + ω 2 e − k ω 2 t cos ( ω x ) d ω u(x,t)=\frac{1}{\pi}\int_{0}^{+\infty}\frac{a}{a^{2}+\omega^{2}}e^{-k\omega^{2}t}\cos(\omega x)d\omega u(x,t)=π1∫0+∞a2+ω2ae−kω2tcos(ωx)dω。
- 利用留数定理等方法可求得 u ( x , t ) = a 4 π k t e − ( x − a ) 2 4 k t u(x,t)=\sqrt{\frac{a}{4\pi kt}}e^{-\frac{(x - a)^2}{4kt}} u(x,t)=4πktae−4kt(x−a)2(当 x ≥ 0 x\geq0 x≥0)。
- 设 U c ( ω , t ) = ∫ 0 + ∞ u ( x , t ) cos ( ω x ) d x U_c(\omega,t)=\int_{0}^{+\infty}u(x,t)\cos(\omega x)dx Uc(ω,t)=∫0+∞u(x,t)cos(ωx)dx,对 u t = k u x x u_t = ku_{xx} ut=kuxx两边关于 t t t进行傅里叶余弦变换:
情况五: g ( x ) = x e − a x g(x)=xe^{-ax} g(x)=xe−ax, h ( t ) = 0 h(t) = 0 h(t)=0
- 积分变换法(傅里叶正弦变换)
- 设 U s ( ω , t ) = ∫ 0 + ∞ u ( x , t ) sin ( ω x ) d x U_s(\omega,t)=\int_{0}^{+\infty}u(x,t)\sin(\omega x)dx Us(ω,t)=∫0+∞u(x,t)sin(ωx)dx,对 u t = k u x x u_t = ku_{xx} ut=kuxx两边关于 t t t进行傅里叶正弦变换:
- ∂ U s ( ω , t ) ∂ t = k ω 2 U s ( ω , t ) \frac{\partial U_s(\omega,t)}{\partial t}=k\omega^{2}U_s(\omega,t) ∂t∂Us(ω,t)=kω2Us(ω,t),其解为 U s ( ω , t ) = C ( ω ) e k ω 2 t U_s(\omega,t)=C(\omega)e^{k\omega^{2}t} Us(ω,t)=C(ω)ekω2t。
- 由初始条件 u ∣ t = 0 = g ( x ) = x e − a x u|_{t = 0}=g(x)=xe^{-ax} u∣t=0=g(x)=xe−ax, U s ( ω , 0 ) = ∫ 0 + ∞ x e − a x sin ( ω x ) d x U_s(\omega,0)=\int_{0}^{+\infty}xe^{-ax}\sin(\omega x)dx Us(ω,0)=∫0+∞xe−axsin(ωx)dx。
- 根据积分公式 ∫ 0 + ∞ x e − a x sin ( ω x ) d x = 2 ω a ( a 2 + ω 2 ) 2 \int_{0}^{+\infty}xe^{-ax}\sin(\omega x)dx=\frac{2\omega a}{(a^{2}+\omega^{2})^2} ∫0+∞xe−axsin(ωx)dx=(a2+ω2)22ωa( a > 0 a>0 a>0),所以 C ( ω ) = 2 ω a ( a 2 + ω 2 ) 2 C(\omega)=\frac{2\omega a}{(a^{2}+\omega^{2})^2} C(ω)=(a2+ω2)22ωa。
- 则 U s ( ω , t ) = 2 ω a ( a 2 + ω 2 ) 2 e k ω 2 t U_s(\omega,t)=\frac{2\omega a}{(a^{2}+\omega^{2})^2}e^{k\omega^{2}t} Us(ω,t)=(a2+ω2)22ωaekω2t。
- 进行傅里叶正弦逆变换 u ( x , t ) = 2 π ∫ 0 + ∞ ω a ( a 2 + ω 2 ) 2 e k ω 2 t sin ( ω x ) d ω u(x,t)=\frac{2}{\pi}\int_{0}^{+\infty}\frac{\omega a}{(a^{2}+\omega^{2})^2}e^{k\omega^{2}t}\sin(\omega x)d\omega u(x,t)=π2∫0+∞(a2+ω2)2ωaekω2tsin(ωx)dω。
- 设 U s ( ω , t ) = ∫ 0 + ∞ u ( x , t ) sin ( ω x ) d x U_s(\omega,t)=\int_{0}^{+\infty}u(x,t)\sin(\omega x)dx Us(ω,t)=∫0+∞u(x,t)sin(ωx)dx,对 u t = k u x x u_t = ku_{xx} ut=kuxx两边关于 t t t进行傅里叶正弦变换:
情况六: g ( x ) = x 2 e − a x g(x)=x^2e^{-ax} g(x)=x2e−ax, h ( t ) = 0 h(t) = 0 h(t)=0
- 积分变换法(结合拉普拉斯变换和傅里叶变换)
- 先对 x x x进行傅里叶变换,设 u ^ ( ξ , t ) = ∫ − ∞ + ∞ u ( x , t ) e − i ξ x d x \hat{u}(\xi,t)=\int_{-\infty}^{+\infty}u(x,t)e^{-i\xi x}dx u^(ξ,t)=∫−∞+∞u(x,t)e−iξxdx,则 ∂ u ^ ( ξ , t ) ∂ t = − k ξ 2 u ^ ( ξ , t ) \frac{\partial\hat{u}(\xi,t)}{\partial t}=-k\xi^{2}\hat{u}(\xi,t) ∂t∂u^(ξ,t)=−kξ2u^(ξ,t), u ^ ( ξ , t ) = u ^ ( ξ , 0 ) e − k ξ 2 t \hat{u}(\xi,t)=\hat{u}(\xi,0)e^{-k\xi^{2}t} u^(ξ,t)=u^(ξ,0)e−kξ2t。
- 由 u ∣ t = 0 = g ( x ) = x 2 e − a x u|_{t = 0}=g(x)=x^2e^{-ax} u∣t=0=g(x)=x2e−ax, u ^ ( ξ , 0 ) = ∫ − ∞ + ∞ x 2 e − a x e − i ξ x d x \hat{u}(\xi,0)=\int_{-\infty}^{+\infty}x^2e^{-ax}e^{-i\xi x}dx u^(ξ,0)=∫−∞+∞x2e−axe−iξxdx。
- 利用分部积分和已知积分公式可得 u ^ ( ξ , 0 ) = 2 ( a + i ξ ) 3 \hat{u}(\xi,0)=\frac{2}{(a + i\xi)^3} u^(ξ,0)=(a+iξ)32。
- 所以 u ^ ( ξ , t ) = 2 ( a + i ξ ) 3 e − k ξ 2 t \hat{u}(\xi,t)=\frac{2}{(a + i\xi)^3}e^{-k\xi^{2}t} u^(ξ,t)=(a+iξ)32e−kξ2t。
- 再进行傅里叶逆变换 u ( x , t ) = 1 2 π ∫ − ∞ + ∞ 2 ( a + i ξ ) 3 e − k ξ 2 t e i ξ x d ξ u(x,t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{2}{(a + i\xi)^3}e^{-k\xi^{2}t}e^{i\xi x}d\xi u(x,t)=2π1∫−∞+∞(a+iξ)32e−kξ2teiξxdξ,通过复变函数的方法(如留数定理)计算该积分。
情况七: g ( x ) = 0 g(x) = 0 g(x)=0, h ( t ) = 1 h(t)=1 h(t)=1
- 拉普拉斯变换
- 设 U ( x , s ) = L [ u ( x , t ) ] U(x,s)=\mathcal{L}[u(x,t)] U(x,s)=L[u(x,t)],对 u t = k u x x u_t = ku_{xx} ut=kuxx进行拉普拉斯变换得 k U x x ( x , s ) − s U ( x , s ) = 0 kU_{xx}(x,s)-sU(x,s)=0 kUxx(x,s)−sU(x,s)=0,通解 U ( x , s ) = A ( s ) e − s k x + B ( s ) e s k x U(x,s)=A(s)e^{-\sqrt{\frac{s}{k}}x}+B(s)e^{\sqrt{\frac{s}{k}}x} U(x,s)=A(s)e−ksx+B(s)eksx。
- 由 u ∣ x = 0 = h ( t ) = 1 u|_{x = 0}=h(t)=1 u∣x=0=h(t)=1,拉普拉斯变换得 U ( 0 , s ) = 1 s U(0,s)=\frac{1}{s} U(0,s)=s1,当 x → + ∞ x\rightarrow+\infty x→+∞, B ( s ) = 0 B(s) = 0 B(s)=0,则 U ( x , s ) = 1 s e − s k x U(x,s)=\frac{1}{s}e^{-\sqrt{\frac{s}{k}}x} U(x,s)=s1e−ksx。
- 拉普拉斯逆变换 u ( x , t ) = erfc ( x 2 k t ) u(x,t)=\text{erfc}\left(\frac{x}{2\sqrt{kt}}\right) u(x,t)=erfc(2ktx)。
情况八: g ( x ) = 1 g(x)=1 g(x)=1, h ( t ) = 0 h(t) = 0 h(t)=0
- 积分变换法(傅里叶变换)
- 设 u ^ ( ω , t ) = ∫ − ∞ + ∞ u ( x , t ) e − i ω x d x \hat{u}(\omega,t)=\int_{-\infty}^{+\infty}u(x,t)e^{-i\omega x}dx u^(ω,t)=∫−∞+∞u(x,t)e−iωxdx,对 u t = k u x x u_t = ku_{xx} ut=kuxx进行傅里叶变换得 ∂ u ^ ( ω , t ) ∂ t = − k ω 2 u ^ ( ω , t ) \frac{\partial\hat{u}(\omega,t)}{\partial t}=-k\omega^{2}\hat{u}(\omega,t) ∂t∂u^(ω,t)=−kω2u^(ω,t), u ^ ( ω , t ) = u ^ ( ω , 0 ) e − k ω 2 t \hat{u}(\omega,t)=\hat{u}(\omega,0)e^{-k\omega^{2}t} u^(ω,t)=u^(ω,0)e−kω2t。
- 由 u ∣ t = 0 = g ( x ) = 1 u|_{t = 0}=g(x)=1 u∣t=0=g(x)=1, u ^ ( ω , 0 ) = ∫ − ∞ + ∞ 1 ⋅ e − i ω x d x = 2 π δ ( ω ) \hat{u}(\omega,0)=\int_{-\infty}^{+\infty}1\cdot e^{-i\omega x}dx = 2\pi\delta(\omega) u^(ω,0)=∫−∞+∞1⋅e−iωxdx=2πδ(ω)( δ ( ω ) \delta(\omega) δ(ω)是狄拉克 delta 函数)。
- 所以 u ^ ( ω , t ) = 2 π δ ( ω ) e − k ω 2 t = 2 π δ ( ω ) \hat{u}(\omega,t)=2\pi\delta(\omega)e^{-k\omega^{2}t}=2\pi\delta(\omega) u^(ω,t)=2πδ(ω)e−kω2t=2πδ(ω)。
- 傅里叶逆变换 u ( x , t ) = 1 4 π k t u(x,t)=\frac{1}{\sqrt{4\pi kt}} u(x,t)=4πkt1。