【动手学深度学习】4.7. 前向传播、反向传播和计算图
目录
- 4.7. 前向传播、反向传播和计算图
- 1)前向传播
- 2)前向传播计算图
- 3)反向传播
- 4)训练神经网络
- 5)小结
.
4.7. 前向传播、反向传播和计算图
1)前向传播
前向传播(forward propagation或forward pass) 指的是:按顺序从输入层到输出层,计算和存储神经网络中每层的结果。
我们将一步步研究单隐藏层神经网络的机制。为了简单起见,我们假设输入样本是 x ∈ R d \mathbf{x} \in \mathbb{R}^d x∈Rd,并且我们的隐藏层不包括偏置项。这里的中间变量是:
z = W ( 1 ) x , (4.7.1) \mathbf{z} = \mathbf{W}^{(1)} \mathbf{x}, \tag{4.7.1} z=W(1)x,(4.7.1)
其中 W ( 1 ) ∈ R h × d \mathbf{W}^{(1)} \in \mathbb{R}^{h \times d} W(1)∈Rh×d 是隐藏层的权重参数。将中间变量 z ∈ R h \mathbf{z} \in \mathbb{R}^h z∈Rh 通过激活函数 ϕ \phi ϕ 后,我们得到长度为 h h h 的隐藏激活向量:
h = ϕ ( z ) . (4.7.2) \mathbf{h} = \phi(\mathbf{z}). \tag{4.7.2} h=ϕ(z).(4.7.2)
隐藏变量 h \mathbf{h} h 也是一个中间变量。假设输出层的参数只有权重 W ( 2 ) ∈ R q × h \mathbf{W}^{(2)} \in \mathbb{R}^{q \times h} W(2)∈Rq×h,我们可以得到输出层变量,它是一个长度为 q q q 的向量:
o = W ( 2 ) h . (4.7.3) \mathbf{o} = \mathbf{W}^{(2)} \mathbf{h}. \tag{4.7.3} o=W(2)h.(4.7.3)
假设损失函数为 l l l,样本标签为 y y y,我们可以计算单个数据样本的损失项:
L = l ( o , y ) . (4.7.4) L = l(\mathbf{o}, y). \tag{4.7.4} L=l(o,y).(4.7.4)
根据 L 2 L_2 L2 正则化的定义,给定超参数 λ \lambda λ,正则化项为
s = λ 2 ( ∥ W ( 1 ) ∥ F 2 + ∥ W ( 2 ) ∥ F 2 ) , (4.7.5) s = \frac{\lambda}{2} \left( \|\mathbf{W}^{(1)}\|_F^2 + \|\mathbf{W}^{(2)}\|_F^2 \right), \tag{4.7.5} s=2λ(∥W(1)∥F2+∥W(2)∥F2),(4.7.5)
其中矩阵的 Frobenius 范数是将矩阵展平为向量后应用的 L 2 L_2 L2 范数。最后,模型在给定数据样本上的正则化损失为:
J = L + s . (4.7.6) J = L + s. \tag{4.7.6} J=L+s.(4.7.6)
在下面的讨论中,我们将 J J J 称为目标函数(objective function)。
.
2)前向传播计算图
绘制计算图有助于我们可视化计算中操作符和变量的依赖关系。
下图,是与上述简单网络相对应的计算图, 其中正方形表示变量,圆圈表示操作符。 左下角表示输入,右上角表示输出。 注意显示数据流的箭头方向主要是向右和向上的。
图4.7.1 前向传播的计算图
.
3)反向传播
反向传播(backward propagation 或 backpropagation)指的是计算神经网络参数梯度的方法。简言之,该方法根据微积分中的链式规则,按相反的顺序从输出层到输入层遍历网络。
该算法存储了计算某些参数梯度时所需的任何中间变量(偏导数)。假设我们有函数 Y = f(X) 和 Z = g(Y),其中输入和输出 X, Y, Z 是任意形状的张量。利用链式法则,我们可以计算关于 X X X 的导数:
∂ Z ∂ X = prod ( ∂ Z ∂ Y , ∂ Y ∂ X ) \frac{\partial Z}{\partial X} = \text{prod} \left( \frac{\partial Z}{\partial Y}, \frac{\partial Y}{\partial X} \right) ∂X∂Z=prod(∂Y∂Z,∂X∂Y)
在这里,我们使用 prod 运算符在执行必要的操作(如换位和交换输入位置)后将其参数相乘。对于向量,这很简单,它只是矩阵-矩阵乘法。对于高维张量,我们使用适当的对应项。运算符 prod 指代了所有的这些符号。
在前面计算图中的单隐藏层简单网络的参数是 W ( 1 ) W^{(1)} W(1) 和 W ( 2 ) W^{(2)} W(2)。反向传播的目的是计算梯度 ∂ J / ∂ W ( 1 ) \partial J/\partial W^{(1)} ∂J/∂W(1) 和 ∂ J / ∂ W ( 2 ) \partial J/\partial W^{(2)} ∂J/∂W(2)。为此,我们应用链式法则,依次计算每个中间变量和参数的梯度。计算的顺序与前向传播中执行的顺序相反,因为我们需要从计算图的结果开始,并朝着参数的方向工作。第一步是计算目标函数 J = L + s J = L + s J=L+s 相对于损失项 L L L 和正则项 s s s 的梯度:
∂ J ∂ L = 1 and ∂ J ∂ s = 1 \frac{\partial J}{\partial L} = 1 \quad \text{and} \quad \frac{\partial J}{\partial s} = 1 ∂L∂J=1and∂s∂J=1
接下来,我们根据链式法则计算目标函数关于输出层变量的梯度:
∂ J ∂ o = prod ( ∂ J ∂ L , ∂ L ∂ o ) = ∂ L ∂ o ∈ R q \frac{\partial J}{\partial \mathbf{o}} = \text{prod} \left( \frac{\partial J}{\partial L}, \frac{\partial L}{\partial \mathbf{o}} \right) = \frac{\partial L}{\partial \mathbf{o}} \in \mathbb{R}^q ∂o∂J=prod(∂L∂J,∂o∂L)=∂o∂L∈Rq
接着,计算正则化项相对于两个参数的梯度:
∂ s ∂ W ( 1 ) = λ W ( 1 ) and ∂ s ∂ W ( 2 ) = λ W ( 2 ) \frac{\partial s}{\partial \mathbf{W}^{(1)}} = \lambda \mathbf{W}^{(1)} \; \text{and} \; \frac{\partial s}{\partial \mathbf{W}^{(2)}} = \lambda \mathbf{W}^{(2)} ∂W(1)∂s=λW(1)and∂W(2)∂s=λW(2)
现在我们可以计算最接近输出层的模型参数的梯度 ∂ J / ∂ W ( 2 ) ∈ R q × h \partial J / \partial W^{(2)} \in \mathbb{R}^{q \times h} ∂J/∂W(2)∈Rq×h。使用链式法则得出:
∂ J ∂ W ( 2 ) = prod ( ∂ J ∂ o , ∂ o ∂ W ( 2 ) ) + prod ( ∂ J ∂ s , ∂ s ∂ W ( 2 ) ) = ∂ J ∂ o h ⊤ + λ W ( 2 ) \frac{\partial J}{\partial \mathbf{W}^{(2)}}= \text{prod}\left(\frac{\partial J}{\partial \mathbf{o}}, \frac{\partial \mathbf{o}}{\partial \mathbf{W}^{(2)}}\right) + \text{prod}\left(\frac{\partial J}{\partial s}, \frac{\partial s}{\partial \mathbf{W}^{(2)}}\right)= \frac{\partial J}{\partial \mathbf{o}} \mathbf{h}^\top + \lambda \mathbf{W}^{(2)} ∂W(2)∂J=prod(∂o∂J,∂W(2)∂o)+prod(∂s∂J,∂W(2)∂s)=∂o∂Jh⊤+λW(2)
为了获得关于 W ( 1 ) W^{(1)} W(1) 的梯度,需要继续沿输出层到隐藏层反向传播。关于隐藏层输出的梯度 ∂ J / ∂ h ∈ R h \partial J / \partial \mathbf{h} \in \mathbb{R}^{h} ∂J/∂h∈Rh 由下式给出:
∂ J ∂ h = prod ( ∂ J ∂ o , ∂ o ∂ h ) = W ( 2 ) ⊤ ∂ J ∂ o \frac{\partial J}{\partial \mathbf{h}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{o}}, \frac{\partial \mathbf{o}}{\partial \mathbf{h}}\right) = {\mathbf{W}^{(2)}}^\top \frac{\partial J}{\partial \mathbf{o}} ∂h∂J=prod(∂o∂J,∂h∂o)=W(2)⊤∂o∂J
由于激活函数 ϕ \phi ϕ 是按元素计算的,计算中间变量的梯度 ∂ J / ∂ z ∈ R h \partial J / \partial \mathbf{z} \in \mathbb{R}^{h} ∂J/∂z∈Rh 需要使用按元素乘法运算符(用 ⊙ \odot ⊙ 表示):
∂ J ∂ z = prod ( ∂ J ∂ h , ∂ h ∂ z ) = ∂ J ∂ h ⊙ ϕ ′ ( z ) \frac{\partial J}{\partial \mathbf{z}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{h}}, \frac{\partial \mathbf{h}}{\partial \mathbf{z}}\right) = \frac{\partial J}{\partial \mathbf{h}} \odot \phi'\left(\mathbf{z}\right) ∂z∂J=prod(∂h∂J,∂z∂h)=∂h∂J⊙ϕ′(z)
最后,我们可以得到最接近输入层的模型参数的梯度 ∂ J / ∂ W ( 1 ) ∈ R h × d \partial J / \partial W^{(1)} \in \mathbb{R}^{h \times d} ∂J/∂W(1)∈Rh×d。根据链式法则:
∂ J ∂ W ( 1 ) = prod ( ∂ J ∂ z , ∂ z ∂ W ( 1 ) ) + prod ( ∂ J ∂ s , ∂ s ∂ W ( 1 ) ) = ∂ J ∂ z x ⊤ + λ W ( 1 ) \frac{\partial J}{\partial \mathbf{W}^{(1)}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{z}}, \frac{\partial \mathbf{z}}{\partial \mathbf{W}^{(1)}}\right) + \text{prod}\left(\frac{\partial J}{\partial s}, \frac{\partial s}{\partial \mathbf{W}^{(1)}}\right) = \frac{\partial J}{\partial \mathbf{z}} \mathbf{x}^\top + \lambda \mathbf{W}^{(1)} ∂W(1)∂J=prod(∂z∂J,∂W(1)∂z)+prod(∂s∂J,∂W(1)∂s)=∂z∂Jx⊤+λW(1)
.
4)训练神经网络
在训练神经网络时,前向传播和反向传播相互依赖。 对于前向传播,我们沿着依赖的方向遍历计算图并计算其路径上的所有变量。 然后将这些用于反向传播,其中计算顺序与计算图的相反。
以上述简单网络为例:
-
一方面,在前向传播期间计算正则项取决于模型参数和的当前值。 它们是由优化算法根据最近迭代的反向传播给出的。
-
另一方面,反向传播期间参数的梯度计算, 取决于由前向传播给出的隐藏变量的当前值。
因此,在训练神经网络时,在初始化模型参数后, 我们交替使用前向传播和反向传播,利用反向传播给出的梯度来更新模型参数。
注意,反向传播重复利用前向传播中存储的中间值,以避免重复计算。带来的影响之一是我们需要保留中间值,直到反向传播完成。 这也是训练比单纯的预测需要更多的内存(显存)的原因之一。 此外,这些中间值的大小与网络层的数量和批量的大小大致成正比。 因此,使用更大的批量来训练更深层次的网络更容易导致内存不足(out of memory)错误。
.
5)小结
-
前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。
-
反向传播按相反的顺序(从输出层到输入层)计算和存储神经网络的中间变量和参数的梯度。
-
在训练深度学习模型时,前向传播和反向传播是相互依赖的。
-
训练比预测需要更多的内存。
.
声明:资源可能存在第三方来源,若有侵权请联系删除!