当前位置: 首页 > news >正文

【工具】CrossAttOmics:基于交叉注意力的多组学数据整合技术

在这里插入图片描述

文章目录

    • 介绍
    • 代码
    • 参考

介绍

高通量技术的进步使得能够大规模获取各种类型的组学数据。每种组学都提供了对潜在生物过程的局部视图。整合多个组学层将有助于实现更准确的诊断。然而,组学数据的复杂性要求采用能够捕捉复杂关系的方法。实现这一目标的一种方式是利用不同组学之间已知的调控联系,这有助于构建更完善的多模态表示。

在本文中,我们提出了 CrossAttOmics 这种基于跨注意力机制的新型深度学习架构,用于多组学整合。每个模态都通过其特定的编码器被投影到一个低维空间中。具有已知调控关系的模态之间的相互作用是在特征表示空间中通过跨注意力计算出来的。本文中进行的不同实验的结果表明,我们的模型能够通过利用多个模态之间的相互作用准确预测癌症的类型。当有少量配对训练示例时,CrossAttOmics 比其他方法表现更优。我们的方法可以与诸如 LRP 等归因方法相结合,以确定哪些相互作用是最为重要的。

在这里插入图片描述

代码

https://github.com/Sanofi-Public/CrossAttOmics

在这里插入图片描述

from functools import reduce
from itertools import chain
from typing import Dict, Iterator, List, Tupleimport numpy as np
import torch
from einops.layers.torch import EinMix, Rearrange
from torch import Tensor, nnclass FullyConnectedLayer(nn.Module):def __init__(self, input_dim: int, output_dim: int, p_dropout: float = 0.0):super().__init__()self.linear = nn.Linear(input_dim, output_dim, bias=False)self.dropout = nn.Dropout(p_dropout)self.act_fn = nn.ReLU()self.batch_norm = nn.BatchNorm1d(output_dim)def forward(self, x: Tensor) -> Tensor:x = self.linear(x)x = self.act_fn(self.batch_norm(x))return self.dropout(x)@propertydef out_features(self) -> int:return self.linear.out_featuresclass FullyConnectedNetwork(nn.Module):def __init__(self, FC_layers: List[FullyConnectedLayer]) -> None:super().__init__()self.layers = nn.Sequential(*FC_layers)def forward(self, x: Tensor) -> Tensor:return self.layers(x)@propertydef out_features(self) -> int:return self.layers[-1].out_featuresclass GroupInteraction(nn.Module):def __init__(self,group_size: int,num_heads: int,) -> None:super().__init__()self.attention = MultiHeadAttentionWrapper(embed_dim=group_size,num_heads=num_heads,k_dim=None,v_dim=None,)self.norm_layer = nn.LayerNorm(group_size)def forward(self, x: Tensor) -> Tensor:z = self.attention(query=x, key=x, value=x)z = z + xreturn self.norm_layer(z)class IndexGroupedFCN(nn.Module):__constants__ = ["in_features", "out_features"]weight: Tensordef __init__(self,in_features: int,out_features: int,n_group: int,group_size: int,group_spec: List[Tensor],proj_dim: List[List[int]],bias: bool = True,) -> None:super().__init__()assert len(group_spec) == n_groupassert n_group * group_size == out_featuresself.n_group = n_grouplayer_dim = [[idx_grp_in.size(0)] + grp_proj_dimfor idx_grp_in, grp_proj_dim in zip(group_spec, proj_dim)]self.list_linear = nn.ModuleList([nn.Sequential(*[nn.Linear(grp_dim[i], grp_dim[i + 1], bias=bias)for i in range(0, len(grp_dim) - 1)])for grp_dim in layer_dim])for i in range(n_group):self.register_buffer(f"index_group_in_{i}", group_spec[i])def index_group_i(self, i: int) -> Tensor:return self.__getattr__(f"index_group_in_{i}")def index_groups(self) -> Iterator[Tensor]:for i in range(self.n_group):yield self.__getattr__(f"index_group_in_{i}")def forward(self, x: Tensor) -> Tensor:return torch.cat([module(x[:, idx_lst])for idx_lst, module in zip(self.index_groups(), self.list_linear)],1,)class AttOmicsInputLayer(nn.Module):def __init__(self,in_features: int,n_group: int,group_size: int,num_heads: int,group_spec: List[Tensor],group_proj_dim: List[List[int]],flatten_output: bool,) -> None:super().__init__()self.flatten_output = flatten_outputself.n_group = n_groupself.group_size = group_sizeself.grouped_dim = n_group * group_sizeself.grouped_mlp = IndexGroupedFCN(in_features=in_features,out_features=self.grouped_dim,n_group=n_group,group_size=group_size,group_spec=group_spec,proj_dim=group_proj_dim,)self.interaction = GroupInteraction(group_size=group_size, num_heads=num_heads)def forward(self, x: Tensor) -> Tensor:# N: Batch size, G: number of groups, s: size of a group# Input dim: Nxd (d: number of input features )x = self.grouped_mlp(x)  # dim: Nx(G*s)x = x.view(-1, self.n_group, self.group_size)  # dim: NxGxsx = self.interaction(x)  # dim: NxGxsif self.flatten_output:x = x.view(-1, self.grouped_dim)  # dim: Nx(G*s)return x@propertydef out_features(self) -> int:_out_features = (self.n_group, self.group_size)if self.flatten_output:_out_features = reduce((lambda x, y: x * y), _out_features)return _out_featuresclass AttOmicsLayer(nn.Module):def __init__(self,in_features: int,n_group: int,in_group_size: int,out_group_size: int,num_heads: int,flatten_output: bool,) -> None:super().__init__()self.flatten_output = flatten_outputself.n_group = n_groupself.out_group_size = out_group_sizeself.grouped_dim = n_group * out_group_size# Transform each group with a MLPself.grouped_mlp = EinMix("B (G s) -> B (G ss)",weight_shape="G ss s",bias_shape="G ss",G=n_group,ss=out_group_size,s=in_group_size,)self.interaction = GroupInteraction(group_size=out_group_size, num_heads=num_heads)def forward(self, x: Tensor) -> Tensor:# N: Batch size, G: number of groups, s: size of a group# Input dim: Nxd (d: number of input features )x = self.grouped_mlp(x)  # dim: Nx(G*s)x = x.view(-1, self.n_group, self.out_group_size)  # dim: NxGxsx = self.interaction(x)  # dim: NxGxsif self.flatten_output:x = x.view(-1, self.grouped_dim)  # dim: Nx(G*s)return x@propertydef out_features(self) -> int:_out_features = (self.n_group, self.out_group_size)if self.flatten_output:_out_features = reduce((lambda x, y: x * y), _out_features)return _out_featuresdef random_grouping(in_features: int, proj_size: int, n_group: int
) -> Tuple[List[Tensor], str, List[List[int]]]:idx_in = torch.randperm(in_features, dtype=torch.long)chunk_sizes = (idx_in.size(0) // n_group) + (np.arange(n_group) < (idx_in.size(0) % n_group))idx_in = idx_in.split(chunk_sizes.tolist(), dim=0)idx_in = [idx.sort().values for idx in idx_in]group_name = [f"Random {i}" for i in range(len(idx_in))]return idx_in, group_name, [[proj_size] for _ in range(n_group)]class AttOmicsEncoder(nn.Module):def __init__(self,in_features: int,n_group: int,group_size_list: List[int],num_heads: int,flatten_output: bool,) -> None:super().__init__()n_layers = len(group_size_list)grouped_dim = [g_size * n_group for g_size in group_size_list]connectivity = random_grouping(in_features=in_features, proj_size=group_size_list[0], n_group=n_group)input_layer = AttOmicsInputLayer(in_features=in_features,n_group=n_group,group_size=group_size_list[0],group_spec=connectivity[0],num_heads=num_heads,group_proj_dim=connectivity[2],flatten_output=flatten_output if n_layers == 1 else True,)attOmics_layers = [input_layer]for i in range(1, n_layers):attOmics_layers.append(AttOmicsLayer(in_features=grouped_dim[i - 1],n_group=n_group,in_group_size=group_size_list[i - 1],out_group_size=group_size_list[i],num_heads=num_heads,flatten_output=flatten_output if (i == (n_layers - 1)) else True,))self.attOmics_layers = nn.Sequential(*attOmics_layers)def forward(self, x: Tensor) -> Tensor:return self.attOmics_layers(x)@propertydef out_features(self) -> int:return self.attOmics_layers[-1].out_featuresclass MultiHeadAttentionWrapper(nn.Module):def __init__(self,embed_dim: int,num_heads: int,k_dim: int | None = None,v_dim: int | None = None,) -> None:super().__init__()if k_dim is None:k_dim = embed_dimif v_dim is None:v_dim = embed_dimself.to_q = nn.Linear(embed_dim, embed_dim, bias=False)self.to_k = nn.Linear(k_dim, embed_dim, bias=False)self.to_v = nn.Linear(v_dim, embed_dim, bias=False)self.to_out = nn.Linear(embed_dim, embed_dim, bias=False)self.create_heads = Rearrange("b n (h d) -> b h n d", h=num_heads)self.fuse_heads = Rearrange("b h n d -> b n (h d)")self.attention_fn = nn.functional.scaled_dot_product_attentiondef forward(self, query: Tensor, key: Tensor, value: Tensor) -> Tensor:q = self.to_q(query)q = self.create_heads(q)k = self.to_k(key)k = self.create_heads(k)v = self.to_v(value)v = self.create_heads(v)x = self.attention_fn(q, k, v, dropout_p=0)x = self.fuse_heads(x)x = self.to_out(x)return xclass CrossAttentionBlock(nn.Module):def __init__(self,embed_dim: int,num_heads: int,k_dim: int,v_dim: int,) -> None:super().__init__()self.norm = nn.LayerNorm(embed_dim)self.attention = MultiHeadAttentionWrapper(embed_dim=embed_dim,num_heads=num_heads,k_dim=k_dim,v_dim=v_dim,)def forward(self, source: Tensor, target: Tensor) -> Tensor:z = self.attention(query=target,key=source,value=source,)z = z + targetreturn self.norm(z)class SelfAttentionBlock(nn.Module):def __init__(self, embed_dim: int, num_heads: int) -> None:super().__init__()self.norm = nn.LayerNorm(embed_dim)self.attention = MultiHeadAttentionWrapper(embed_dim=embed_dim,num_heads=num_heads,k_dim=None,v_dim=None,)def forward(self, x: Tensor) -> Tensor:z = self.attention(query=x, key=x, value=x)z = z + xreturn self.norm(z)class OmicsInteraction(nn.Module):def __init__(self,omics: List[str],interaction_graph: Dict[str, List[str]],cross_attention_blocks: Dict[str, CrossAttentionBlock],self_attention_blocks: Dict[str, SelfAttentionBlock] | None = None,add_unimodal_branches: bool = True,add_unimodal_to_multimodal: bool = False,) -> None:super().__init__()self.add_unimodal_branches = add_unimodal_branchesself.add_unimodal_to_multimodal = add_unimodal_to_multimodalself.omics = omicsself.interaction_graph = interaction_graphself.not_target_modalities = sorted(set(omics)- set(interaction_graph.keys())  # interaction graph is a dict, keys are target modalities)self.cross_layers = nn.ModuleDict(cross_attention_blocks)  # module dict, key is a str: source-_-targetself.use_SA = Falseif self_attention_blocks:self.use_SA = Trueself.sa_layers = nn.ModuleDict(self_attention_blocks)  # dict too, modality: layerself.flatten_group = Rearrange("b G s -> b (G s)")def __apply_cross_attention(self, target, source, ca_key):return self.cross_layers[ca_key](target=target, source=source)def __apply_self_attention(self, z):# Dict[str, Tensor[N,G,s]]return {omics: self.sa_layers[omics](x_target) for omics, x_target in z.items()}def __handle_not_a_target_modalities(self, x, z):if self.add_unimodal_branches:not_target_mod = map(x.get, self.not_target_modalities)z = torch.cat([self.flatten_group(zz)for zz in chain(z.values(),not_target_mod,)],dim=1,)else:z = torch.cat([self.flatten_group(zz) for zz in z.values()], dim=1)return zdef forward(self, x: Dict[str, Tensor]) -> Tensor:# x: Dict[str, Tensor[N,G,s]]z = {}for target, sources in self.interaction_graph.items():cross_att_list = []for source in sources:ca_key = source + "-_-" + targetca_res = self.__apply_cross_attention(x[target], x[source], ca_key)cross_att_list.append(ca_res)if self.add_unimodal_to_multimodal:cross_att_list.append(x[target])z[target] = torch.cat(cross_att_list, dim=1)if self.use_SA:z = self.__apply_self_attention(z)z = self.__handle_not_a_target_modalities(x, z)return zclass AttOmics(nn.Module):nice_name: str = "AttOmics"color: str = "#b80058"def __init__(self,encoder: AttOmicsEncoder,head: FullyConnectedNetwork,num_classes: int,) -> None:super().__init__()self.encoder = encoderself.head = headin_dim = head.out_featuresself.classifier = nn.Linear(in_dim, num_classes)def forward(self, x: Tensor) -> Tensor:x = self.encoder(x)x = self.head(x)return self.classifier(x)class CrossAttOmics(nn.Module):nice_name: str = "CrossAttOmics"color: str = "#ebac23"def __init__(self,num_classes: Dict[str, int],modalities_encoders: Dict[str, nn.Module],fusion: OmicsInteraction,multimodal_encoder: FullyConnectedNetwork,) -> None:super().__init__()self.modalities_encoders = nn.ModuleDict(modalities_encoders)self.fusion = fusionself.multimodal_encoder = multimodal_encoderin_dim = multimodal_encoder.out_featuresself.classifier = nn.Linear(in_dim, num_classes)def forward(self, x: Dict[str, Tensor]) -> Tensor:x = {omics: self.modalities_encoders[omics](x_omics)for omics, x_omics in x.items()}x = self.fusion(x)x = self.multimodal_encoder(x)return self.classifier(x)

参考

  • CrossAttOmics: multiomics data integration with cross-attention
  • https://github.com/Sanofi-Public/CrossAttOmics

相关文章:

  • React纯函数和hooks原理
  • 一次性理解Java垃圾回收--简单直接方便面试时使用
  • 华为云Flexus+DeepSeek征文|在Dify-LLM平台中开发童话故事精灵工作流AI Agent
  • java中关于异步转同步的一些解决方案的对比与思考。【spring mvc堵塞式】
  • springboot企业级项目开发之项目测试——集成测试!
  • 【Java】HQL批量增删改
  • 从零理解鱼眼相机的标定与矫正(含 OpenCV 代码与原理讲解)
  • 性能测试之接口关联和函数使用
  • Android14 app被冻结导致进程间通信失败
  • NumPy 数组排序
  • 【Zephyr 系列 28】MCU 闪存文件系统详解:LittleFS + NVS + 块设备设计实战
  • Mybatis踩坑之一天
  • Kafka 原理与核心机制全解析
  • 【unitrix】 4.1 类型级加一操作(Add1.rs)
  • Vmware WorkStation 17.5 安装 Ubuntu 24.04-LTS Server 版本
  • Qt项目,记事本
  • windows桌面连接ubuntu, 设置VNC
  • BERT 模型准备与转换详细操作流程
  • 科学计算库 Numpy
  • 软件工程核心知识全景图:从需求到部署的系统化构建指南
  • 网站怎么免费做推广方案/长沙seo优化推荐
  • 网站建设 浏览器兼容/网站搜什么关键词好
  • 衡水做网站建设公司/seo这个职位是干什么的
  • 大连网站开发/哪家培训机构学校好
  • 网站弹广告是什么样做的/谷歌浏览器下载电脑版
  • 赣州网站建设精英/网络优化软件