当前位置: 首页 > news >正文

python:使用 OpenAI CLIP 模型进行图像与文本的语义匹配,并用彩虹色带可视化 CLIP 模型的相似度矩阵

作者:CSDN @ _养乐多_

本文将介绍如何使用 OpenAI 的 CLIP 模型来实现图像与文本之间的语义匹配。代码使用 Python 语言,加载多个图像与类别文本,并通过计算余弦相似度判断每张图片最匹配的文本标签。

结果如下图所示,

在这里插入图片描述


文章目录

      • 一、什么是 CLIP?
      • 二、准备工作
      • 三、代码
      • 四、代码2


一、什么是 CLIP?

CLIP(Contrastive Language–Image Pre-training)是由 OpenAI 提出的模型,它能够将图像和文本映射到同一个向量空间,从而实现跨模态的理解能力。CLIP 的强大之处在于它无需专门为某个任务训练,也能胜任广泛的图像识别和文本匹配任务。

二、准备工作

准备好一个包含若干图像的文件夹(如 ./images)。如"cat.jpg", “dog.jpg”, “car.jpg”, “mountain.jpg”, “food.jpg”。

安装第三方库

pip install torch torchvision ftfy regex tqdm
pip install git+https://github.com/openai/CLIP.git

三、代码

import torch
import clip
from PIL import Image
import os
import matplotlib.pyplot as plt
import numpy as np
from typing import Listdef load_images(image_paths: List[str]) -> List[Image.Image]:"""加载并转换图像为RGB格式参数:image_paths: 图像文件路径列表返回:PIL Image对象列表"""return [Image.open(path).convert("RGB") for path in image_paths]def compute_similarity(model, preprocess, images, texts, device):"""使用CLIP模型计算图像和文本之间的余弦相似度参数:model: CLIP模型实例preprocess: 图像预处理函数images: PIL Image列表texts: 文本标签列表device: 设备名称(cpu或cuda)返回:numpy数组,形状为 (图像数, 文本类别数),值为相似度分数"""# 预处理图像,转为tensor并堆叠到一个batch,放到指定设备image_tensors = torch.stack([preprocess(img) for img in images]).to(device)# 对文本进行tokenize并放到设备text_tokens = clip.tokenize(texts).to(device)with torch.no_grad():# 编码图像和文本特征image_features = model.encode_image(image_tensors)text_features = model.encode_text(text_tokens)# 对特征做归一化,方便计算余弦相似度image_features /= image_features.norm(dim=-1, keepdim=True)text_features /= text_features.norm(dim=-1, keepdim=True)# 计算余弦相似度矩阵 (图像特征 @ 文本特征转置)similarity = image_features @ text_features.Treturn similarity.cpu().numpy()def visualize_similarity_matrix_with_images(images, image_paths, categories, similarity):"""可视化相似度矩阵,左侧显示对应图片,右侧按类别显示彩虹色相似度色块,色块内标注相似度数值参数:images: PIL Image列表image_paths: 图像路径列表(用于显示文件名)categories: 文本类别标签列表similarity: numpy数组,图像与文本类别的相似度矩阵"""num_images = len(images)num_categories = len(categories)# 计算相似度最小和最大值,用于归一化色带映射min_val = similarity.min()max_val = similarity.max()# 创建子图,列数比类别数多1列,用于放图片fig, axs = plt.subplots(num_images, num_categories + 1, figsize=(2 * (num_categories + 1), 2 * num_images))if num_images == 1:axs = axs.reshape(1, -1)  # 保证axs是2D数组,方便统一处理# 去除子图间距,保证格子紧密无缝隙plt.subplots_adjust(wspace=0, hspace=0)# 第一行显示类别标题(只显示文字,不显示轴)for j in range(num_categories):axs[0, j+1].set_title(categories[j], fontsize=11, pad=6)axs[0, j+1].axis('off')axs[0, 0].axis('off')  # 左上角空白# 遍历每张图片和每个类别for i in range(num_images):# 左侧显示图片,不显示坐标轴axs[i, 0].imshow(images[i])axs[i, 0].axis('off')# 图片文件名作为标题axs[i, 0].set_title(os.path.basename(image_paths[i]), fontsize=8, pad=4)for j in range(num_categories):sim_val = similarity[i, j]# 将相似度归一化到0-1区间,用于颜色映射norm_val = (sim_val - min_val) / (max_val - min_val) if max_val > min_val else 0# 使用彩虹色带(rainbow)映射相似度color = plt.cm.rainbow(norm_val)# 显示彩色方块axs[i, j+1].imshow(np.ones((20,20,3)) * color[:3])axs[i, j+1].axis('off')# 根据颜色亮度选择文字颜色,保证对比度,易读性brightness = 0.299 * color[0] + 0.587 * color[1] + 0.114 * color[2]font_color = 'black' if brightness > 0.6 else 'white'# 在色块中心写入相似度数值axs[i, j+1].text(10, 10, f"{sim_val:.2f}", ha='center', va='center', fontsize=9, color=font_color)# 自动紧凑布局,去除多余边距plt.tight_layout(pad=0)plt.show()def main():# 选择设备,优先cuda,否则cpudevice = "cuda" if torch.cuda.is_available() else "cpu"# 加载CLIP模型和对应的图像预处理函数model, preprocess = clip.load("ViT-B/32", device=device)# 指定图像文件夹路径image_folder = "./images"# 遍历文件夹,筛选常见图片格式路径image_paths = [os.path.join(image_folder, f) for f in os.listdir(image_folder)if f.lower().endswith(('jpg', 'png', 'jpeg'))]# 读取所有图像images = load_images(image_paths)# 设定要匹配的文本类别categories = ["cat", "dog", "car", "mountain", "food"]# 计算图像与文本类别的相似度矩阵similarity = compute_similarity(model, preprocess, images, categories, device)# 输出每张图片匹配度最高的类别及相似度for i, path in enumerate(image_paths):best_idx = similarity[i].argmax()print(f"Image: {os.path.basename(path)} => Best match: '{categories[best_idx]}' (Similarity: {similarity[i][best_idx]:.4f})")# 可视化相似度矩阵visualize_similarity_matrix_with_images(images, image_paths, categories, similarity)if __name__ == "__main__":main()

谢谢各位读者对本人文章的关注和支持!

四、代码2

和第三部分一样,只是可视化效果不一样。

在这里插入图片描述

import torch
import clip
from PIL import Image
import os
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Listdef load_images(image_paths: List[str]) -> List[Image.Image]:return [Image.open(path).convert("RGB") for path in image_paths]def compute_similarity(model, preprocess, images, texts, device):image_tensors = torch.stack([preprocess(img) for img in images]).to(device)text_tokens = clip.tokenize(texts).to(device)with torch.no_grad():image_features = model.encode_image(image_tensors)text_features = model.encode_text(text_tokens)image_features /= image_features.norm(dim=-1, keepdim=True)text_features /= text_features.norm(dim=-1, keepdim=True)similarity = image_features @ text_features.Treturn similarity.cpu().numpy()def visualize_similarity_matrix(image_paths, categories, similarity):plt.figure(figsize=(12, max(4, len(image_paths) * 0.5)))sns.heatmap(similarity, xticklabels=categories, yticklabels=[os.path.basename(p) for p in image_paths],cmap="YlGnBu", annot=True, fmt=".2f")plt.xlabel("Categories")plt.ylabel("Images")plt.title("Image-Text Similarity Matrix")plt.tight_layout()plt.show()def main():device = "cuda" if torch.cuda.is_available() else "cpu"model, preprocess = clip.load("ViT-B/32", device=device)image_folder = "./images"image_paths = [os.path.join(image_folder, f) for f in os.listdir(image_folder)if f.lower().endswith(('jpg', 'png', 'jpeg'))]images = load_images(image_paths)categories = ["cat", "dog", "car", "mountain", "food"]similarity = compute_similarity(model, preprocess, images, categories, device)# 输出每张图片与文本类别的相似度for i, path in enumerate(image_paths):best_idx = similarity[i].argmax()print(f"Image: {os.path.basename(path)} => Best match: '{categories[best_idx]}' (Similarity: {similarity[i][best_idx]:.4f})")visualize_similarity_matrix(image_paths, categories, similarity)if __name__ == "__main__":main()

相关文章:

  • TodoList 案例(Vue3): 使用Composition API
  • 嵌入式开发之嵌入式系统架构如何搭建?
  • 【StarRocks系列】建表优化
  • AI与SEO关键词协同进化
  • HarmonyOS 5 NPU支持哪些AI框架?
  • 系统化的Node.js服务器搭建攻略
  • 如何用 eBPF 实现 Kubernetes 网络可观测性?实战指南
  • 读者写者问题与读写锁自旋锁
  • 文献调研[eeg溯源的深度学习方法](过程记录)
  • AI大模型学习之基础数学:微积分在AI大模型中的核心-梯度与优化(梯度下降)详解
  • 《Effective Python》第九章 并发与并行——总结(基于物流订单处理系统)
  • Flink流水线+Gravitino+Paimon集成
  • Go实战项目OneX介绍(5/12):通过测试,了解 OneX 项目的使用方式和功能
  • 微前端MFE:(React 与 Angular)框架之间的通信方式
  • c++中 Lambda表达式
  • 57-Oracle SQL Profile(23ai)实操
  • 项目练习:Jaspersoft Studio制作PDF报表时,detail和column footer之间存在很大的空白区
  • RocketMQ--为什么性能不如Kafka?
  • 使用 Telegraf 向 TDengine 写入数据
  • 循环队列的顺序实现和链式实现 #数据结构(C,C++)
  • 长春市长春网站建设网/网络营销的基本特征有哪七个
  • 链接制作网站/今日新闻大事件
  • 淘宝客如何做网站/中国万网域名注册服务内容
  • 张家港网站制作服务/seo优化平台
  • html制作网站的步骤/东莞网站建设推广技巧
  • 建设银行人力资源系统网站首页/论坛推广的特点