当前位置: 首页 > news >正文

Self-supervised Learning(BERT/GPT/T5)

李宏毅老师《Pre-train Model》

什么是:Self-supervised Learning
在这里插入图片描述

BERT

BERT 能做什么

Mask Input

在这里插入图片描述

Next Sentence Prediction(not helpful)

在这里插入图片描述

BERT其它的能力

上述的能力,可以认为是一种填空的能力,那么除了这些,还有哪些有用的能力呢?
在这里插入图片描述

BERT能力模型评估

GLUE(General Language Understanding Evaluation)

GLUE是一个自然语言理解(NLU)任务的评测基准,由华盛顿大学 & Google Brain 联合发布(2018 年)。

就像给 NLP 模型搞期末考试一样,通过一系列标准化任务,看模型对语言理解能力到底行不行。

GLUE 里都考什么?

GLUE 是一个任务集合(benchmark suite),包含了 9 个子任务,主要考:

  • 句子关系判断
  • 情感分类
  • 语义相似度
  • 推理能力
  • 语言蕴含关系

核心任务表:

任务名任务类型简介
MNLI句子蕴含 (NLI)判断两句话是否蕴含、矛盾或无关
QNLI问答 NLI判断一句话是否回答了问题
QQP句子相似度判断两个问题是否等价
SST-2情感分类判断句子是积极还是消极
CoLA语言学可接受性判断句子是否语法正确
MRPC句子对等判断判断两句话是否语义等价
STS-B语义相似度打分给两个句子相似度打分 (0~5)

BERT and its Family GLUE scores

在这里插入图片描述

TraIning BERT

在这里插入图片描述

How to use BERT

Use Case1: 情感分析

在这里插入图片描述

Use Case2: 词性标注

在这里插入图片描述

Use Case3: 自然语言蕴含推理

NLI(Natural Language Inference): 给定两句话,第二句是不是能从第一句推理出来、相矛盾,还是无关?

** NLI 任务通常分类**

标签含义举例
Entailment蕴含(能推导出来)A: “所有狗都会叫。” B: “我家狗会叫。”
Contradiction矛盾A: “所有狗都会叫。” B: “我家狗从不叫。”
Neutral无关或无法确定A: “所有狗都会叫。” B: “我家狗喜欢吃骨头。”

在这里插入图片描述

Use Case4: 抽取式问答

Extraction-based QA(抽取式问答) 是一种 从给定文本中直接抽取答案片段的问答方法。
特点:

  • 给定一段上下文 + 一个问题
  • 系统在上下文里找出一段或一句话,作为答案
  • 答案必须是原文里的内容(抽取出来,不是生成出来)

举个例子

上下文:“OpenAI 是一家人工智能研究机构,成立于 2015 年,总部位于旧金山。”
问题: “OpenAI 成立于哪一年?”
抽取式答案: “2015 年”

在这里插入图片描述

Why does BERT work?

Contextualized word embedding

在这里插入图片描述

Apply BERT to protein,DNA, music classification

在这里插入图片描述

Multi-lingual BERT

:用英文的QA问题训练,用中文做QA问答
在这里插入图片描述

why

这些相同语意的词,中、英文词 的词向量很近.
在这里插入图片描述

零样本阅读理解

Zero-shot Reading Comprehension(零样本阅读理解 )指的是: 不给模型提供任何相似示例,直接让模型基于上下文和问题,理解语义、判断答案或生成回答。

例:

  • 上下文:“OpenAI 成立于 2015 年,总部在旧金山,专注于 AI 技术研究。”

  • 问题: “OpenAI 的总部在哪?”

  • Zero-shot 模型行为:
    • 没有事先见过类似「总部在哪」的训练样本
    • 依靠语言理解能力,定位上下文中的「总部在旧金山」,直接输出

它和 Few-shot / Fine-tuning 的区别
类型定义示例
Zero-shot完全不给示例,直接回答只给上下文和问题
Few-shot给几条类似示例,再回答给 2~5 个 QA 示例
Fine-tuning预先用大量类似数据微调,提升特定任务能力用大量阅读理解任务微调好的模型


GPT(Generative Pre-trained Transformer)

生成式预训练 Transformer 模型

Predict Next Token

<BOS>: begin-of-sentence

在这里插入图片描述

How to use GPT

在这里插入图片描述

Few-shot/One-shot/Zero-shot Learning

在这里插入图片描述


T5

T5全称: Text-To-Text Transfer Transformer
由 Google AI 团队 2019 年发布,发表在论文《Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer》

它和 GPT 最大不同

  • GPT 是文本 → 文本生成偏生成式
  • T5 是·“所有 NLP 任务都统一成 Text-to-Text 格式”

不管是翻译、分类、问答、摘要,全部都按照这个套路来做:

输入:一句文本(带任务提示)
输出:一句文本(任务结果)

本质上就是一个编码器-解码器结构的 Transformer。

T5 典型应用场景

应用场景举例
机器翻译translate English to French: How are you? → Comment ça va ?
问答系统question: Who founded OpenAI? context: OpenAI was founded in 2015 by Elon Musk and Sam Altman. → Elon Musk and Sam Altman
文本摘要summarize: OpenAI is an AI company founded in 2015... → An AI company founded in 2015.
文本分类classify sentiment: I love this product. → positive
语义相似度sts: Sentence A. Sentence B. → 4.5(打分形式)

#T5、BERT、GPT 各自区别

模型架构类型输入-输出形式典型用途能否生成文本
BERT编码器-only,双向编码文本 → 分类/判断分类、问答、NER、相似度匹配
GPT解码器-only,自回归生成文本 → 续写文本对话、文章续写、代码生成
T5编码器-解码器(双向+自回归)文本 → 文本(统一文本形式)翻译、摘要、问答、分类等多任务

相关文章:

  • Mac中Docker Desktop无法使用,可使用OrbStack
  • 前端页面Javascript数组
  • 25.Hybrid+安卓项目调试方法
  • Java素数筛法:BitSieve类的精妙设计
  • 【无标题】对拓扑对偶框架关键质疑的深度解答
  • 【Java学习笔记】线程基础
  • 【Dify 案例】【自然语言转SQL案例】【五】【实战二】【财务管理查询商品信息数据】
  • 有哪些东西东西时间越长越值钱?做哪些事时间越长越值钱?伪长期增值陷阱​ 打造财富复利成长策略
  • 第十三章 模板
  • Spring Aop @AfterThrowing (异常通知): 使用场景
  • Cesium、ThreeWebGL详解(二)渲染引擎向GPU传数据、性能优化、引擎对比
  • 无人机测量风速的思路
  • 解决uni-app发布微信小程序主包大小限制为<2M的问题
  • 宽带中频10.4G采集卡
  • 类图:软件世界的“建筑蓝图”
  • NestJS中实现动态Cron任务管理
  • Babylon.js学习之路《十、高级几何体:自定义模型与复杂形状生成》
  • Tkinter基础函数知识点整理
  • SAM2论文解读-既实现了视频的分割一切,又比图像的分割一切SAM更快更好
  • Postman接口测试完整版
  • web前端毕业设计论文/seo关键词挖掘
  • 温州市手机网站制作哪家好/网络营销工作内容
  • flash代码做网站教程/太原百度seo排名
  • wordpress 显示纯文字/百度小程序优化
  • 网站外链 快速建设/页面设计漂亮的网站
  • php java开发网站开发/外贸推广建站