Burgers方程初值问题解的有效区域
{ u t + u u x = 0 , t > 0 ; u ∣ t = 0 = f ( x ) \begin{cases} u_t + u u_x = 0, & t > 0; \\ u|_{t=0} = f(x) \end{cases} {ut+uux=0,u∣t=0=f(x)t>0;
并描述在 ( x , t ) (x,t) (x,t) 平面上解有效定义的区域,使用以下初始数据之一:
f ( x ) = tanh ( x ) ; f ( x ) = − tanh ( x ) ; f(x) = \tanh(x); \quad f(x) = -\tanh(x); f(x)=tanh(x);f(x)=−tanh(x);
f ( x ) = { − 1 x < − a , x a − a ≤ x ≤ a , 1 x > a ; f(x) = \begin{cases} -1 & x < -a, \\ \frac{x}{a} & -a \leq x \leq a, \\ 1 & x > a; \end{cases} f(x)=⎩⎪⎨⎪⎧−1ax1x<−a,−a≤x≤a,x>a;
f ( x ) = { 1 a x < − a , − x a − a ≤ x ≤ a , − 1 x > a ; f(x) = \begin{cases} \frac{1}{a} & x < -a, \\ -\frac{x}{a} & -a \leq x \leq a, \\ -1 & x > a; \end{cases} f(x)=⎩⎪⎨⎪⎧a1−ax−1x<−a,−a≤x≤a,x>a;
f ( x ) = { − 1 x < 0 , 1 x > 0 ; f(x) = \begin{cases} -1 & x < 0, \\ 1 & x > 0; \end{cases} f(x)={−11x<0,x>0;
f ( x ) = { sin ( x ) ∣ x ∣ < π , 0 ∣ x ∣ > π , f(x) = \begin{cases} \sin(x) & |x| < \pi, \\ 0 & |x| > \pi, \end{cases} f(x)={sin(x)0∣x∣<π,∣x∣>π,
其中 a > 0 a > 0 a>0 是参数。
问题求解
该问题涉及一阶拟线性偏微分方程(无粘性Burgers方程):
u t + u u x = 0 , t > 0 , u_t + u u_x = 0, \quad t > 0, ut+uux=0,t>0,
初始条件为 u ( x , 0 ) = f ( x ) u(x,0) = f(x) u(x,0)=f(x)。方程的特征线方程为 d x d t = u \frac{dx}{dt} = u dtdx=u,沿特征线 u u u 为常数。解为 u ( x , t ) = f ( x 0 ) u(x,t) = f(x_0) u(x,t)=f(x0),其中 x 0 x_0 x0 满足 x = x 0 + f ( x 0 ) t x = x_0 + f(x_0) t x=x0+f(x0)t。解在特征线相交前有效(即激波形成前),此时解为经典解(光滑或连续)。激波形成时间由 1 + f ′ ( x 0 ) t = 0 1 + f'(x_0) t = 0 1+f′(x0)t=0 的最小正解决定(当 f ′ ( x 0 ) < 0 f'(x_0) < 0 f