2025年全国I卷数学压轴题解答
第19题第3问: b b b 使得存在 t t t, 对于任意的 x x x, 5 cos x − cos ( 5 x + t ) < b 5\cos x-\cos(5x+t)<b 5cosx−cos(5x+t)<b, 求 b b b 的最小值.
解:
b b b 的最小值 b m i n = min t max x g ( x , t ) b_{min}=\min_{t} \max_{x} g(x,t) bmin=mintmaxxg(x,t), 其中 g ( x , t ) = 5 cos x − cos ( 5 x + t ) g(x,t)=5\cos x-\cos (5x+t) g(x,t)=5cosx−cos(5x+t).
下面先求解 max x g ( x , t ) \max_{x} g(x,t) maxxg(x,t).
构造关于变元 x x x 的辅助函数 h ( x ) = g ( x , t ) h(x)=g(x,t) h(x)=g(x,t).
则 max x g ( x , t ) = max x h ( x ) \max_{x} g(x,t)=\max_{x} h(x) maxxg(x,t)=maxxh(x).
h ′ ( x ) = − 5 sin x + 5 sin ( 5 x + t ) h'(x)=-5\sin x+5\sin (5x+t) h′(x)=−5sinx+5sin(5x+t).
求解以下方程得到极值点:
2 k π + x = 5 x + t 2k\pi+x=5x+t 2kπ+x=5x+t, k ∈ Z k\in \mathbb{Z} k∈Z.
x = 2 k π − t 4 x=\frac{2k\pi-t}{4} x=42kπ−t.
( 2 k + 1 ) π − x = 5 x + t (2k+1)\pi-x=5x+t (2k+1)π−x=5x+t.
x = ( 2 k + 1 ) π − t 6 x=\frac{(2k+1)\pi-t}{6} x=6(2k+1)π−t.
max x h ( x ) = max { max k [ 5 cos ( k π 2 − t 4 ) − cos ( 5 k π 2 − t 4 ) ] , max k [ 5 cos ( ( 2 k + 1 ) π 6 − t 6 ) − cos ( ( 10 k + 5 ) π 6 + t 6 ) ] } \max_{x} h(x)=\max \{\max_{k}[5 \cos (\frac{k\pi}{2}-\frac{t}{4}) - \cos (\frac{5k\pi}{2}-\frac{t}{4})], \max_{k} [5 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) - \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6})]\} maxxh(x)=max{maxk[5cos(2kπ−4t)−cos(25kπ−4t)],maxk[5cos(6(2k+1)π−6t)−cos(6(10k+5)π+6t)]}
显然 h ( x ) h(x) h(x) 的图像以 2 π 2\pi 2π 为周期, 且满足性质 h ( x ) = − h ( x + π ) h(x)=-h(x+\pi) h(x)=−h(x+π), 所以它的每个极大值的相反数必然是极小值, 反之亦然. 对所有的极值取绝对值, 正极值不变, 负的极值变成正的极值, 并不影响结果. 由此得到:
max x h ( x ) = max { max k ∣ 5 cos ( k π 2 − t 4 ) − cos ( 5 k π 2 − t 4 ) ∣ , max k ∣ 5 cos ( ( 2 k + 1 ) π 6 − t 6 ) − cos ( ( 10 k + 5 ) π 6 + t 6 ) ∣ } \max_{x} h(x)=\max \{\max_{k}|5 \cos (\frac{k\pi}{2}-\frac{t}{4}) - \cos (\frac{5k\pi}{2}-\frac{t}{4})|, \max_{k} |5 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) - \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6})|\} maxxh(x)=max{maxk∣5cos(2kπ−4t)−cos(25kπ−4t)∣,maxk∣5cos(6(2k+1)π−6t)−cos(6(10k+5)π+6t)∣}
其中:
5 cos ( k π 2 − t 4 ) − cos ( 5 k π 2 − t 4 ) = 4 cos ( k π 2 − t 4 ) 5 \cos (\frac{k\pi}{2}-\frac{t}{4})- \cos (\frac{5k\pi}{2}-\frac{t}{4}) =4 \cos (\frac{k\pi}{2}-\frac{t}{4}) 5cos(2kπ−4t)−cos(25kπ−4t)=4cos(2kπ−4t),
cos ( ( 10 k + 5 ) π 6 + t 6 ) = cos ( ( − 10 k − 5 ) π 6 − t 6 ) = − cos ( ( − 10 k − 5 ) π 6 − t 6 + ( 2 k + 1 ) π ) = − cos ( ( 2 k + 1 ) π 6 − t 6 ) \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6}) = \cos (\frac{(-10k-5)\pi}{6}-\frac{t}{6})=-\cos (\frac{(-10k-5)\pi}{6}-\frac{t}{6}+(2k+1)\pi)=-\cos(\frac{(2k+1)\pi}{6}-\frac{t}{6}) cos(6(10k+5)π+6t)=cos(6(−10k−5)π−6t)=−cos(6(−10k−5)π−6t+(2k+1)π)=−cos(6(2k+1)π−6t).
5 cos ( ( 2 k + 1 ) π 6 − t 6 ) − cos ( ( 10 k + 5 ) π 6 + t 6 ) = 6 cos ( ( 2 k + 1 ) π 6 − t 6 ) 5 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) - \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6})=6\cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) 5cos(6(2k+1)π−6t)−cos(6(10k+5)π+6t)=6cos(6(2k+1)π−6t).
所以 max x g ( x , t ) = max x h ( x ) = max { max k ∣ 4 cos ( k π 2 − t 4 ) ∣ , max k ∣ 6 cos ( ( 2 k + 1 ) π 6 − t 6 ) ∣ } \max_{x}g(x,t)=\max_{x} h(x)=\max \{\max_{k}|4 \cos (\frac{k\pi}{2}-\frac{t}{4}) |, \max_{k} |6 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6})|\} maxxg(x,t)=maxxh(x)=max{maxk∣4cos(2kπ−4t)∣,maxk∣6cos(6(2k+1)π−6t)∣}.
下面求解: max t max x g ( x , t ) \max_{t} \max_{x}g(x,t) maxtmaxxg(x,t).
其中:
max k ∣ 6 cos ( ( 2 k + 1 ) π 6 − t 6 ) ∣ = max k = − 1 , 0 , 1 ∣ 6 cos ( ( 2 k + 1 ) π 6 − t 6 ) ∣ = 6 max { ∣ cos − π − t 6 ∣ , ∣ cos π − t 6 ∣ , ∣ cos 3 π − t 6 ∣ } \max_{k} |6 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6})|=\max_{k=-1,0,1}|6 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6})|=6\max\{|\cos\frac{-\pi-t}{6}|, |\cos\frac{\pi-t}{6}|, |\cos\frac{3\pi-t}{6}|\} maxk∣6cos(6(2k+1)π−6t)∣=maxk=−1,0,1∣6cos(6(2k+1)π−6t)∣=6max{∣cos6−π−t∣,∣cos6π−t∣,∣cos63π−t∣}.
构造关于变元 x x x 的辅助函数 g ( x ) = max { ∣ cos ( x − π 3 ) ∣ , ∣ cos x ∣ , ∣ cos ( x + π 3 ) ∣ } g(x)=\max\{|\cos (x-\frac{\pi}{3})|, |\cos x|, |\cos (x+\frac{\pi}{3})|\} g(x)=max{∣cos(x−3π)∣,∣cosx∣,∣cos(x+3π)∣}, 结合图像可知 g ( x ) ≥ 3 2 g(x)\geq \frac{\sqrt{3}}{2} g(x)≥23, 当 x = π 6 x=\frac{\pi}{6} x=6π 时等号成立.
所以 max { ∣ cos − π − t 6 ∣ , ∣ cos π − t 6 ∣ , ∣ cos 3 π − t 6 ∣ } ≥ 3 2 \max\{|\cos\frac{-\pi-t}{6}|, |\cos\frac{\pi-t}{6}|, |\cos\frac{3\pi-t}{6}|\} \geq \frac{\sqrt{3}}{2} max{∣cos6−π−t∣,∣cos6π−t∣,∣cos63π−t∣}≥23, 当 π − t 6 = π 6 \frac{\pi-t}{6}=\frac{\pi}{6} 6π−t=6π, 即 t = 0 t=0 t=0 时等号成立.
∣ 4 cos ( k π 2 − t 4 ) ∣ ≤ 4 < 3 3 |4 \cos (\frac{k\pi}{2}-\frac{t}{4})|\leq 4<3\sqrt{3} ∣4cos(2kπ−4t)∣≤4<33.
综上, max t max x g ( x , t ) = 3 3 \max_{t} \max_{x}g(x,t)=3\sqrt{3} maxtmaxxg(x,t)=33.