当前位置: 首页 > news >正文

论文笔记:Urban Computing in the Era of Large Language Models

202504 arxiv

1 intro

  • 深度学习因其强大的表示和关系建模能力,在城市计算中发挥着关键作用
    • 城市数据表现出明显的时间和空间相关性
      • 为了捕捉时间依赖性,RNN,TCN,attention被广泛使用
      • 为了捕捉空间依赖性,GCN被广泛使用
    • 对于需要根据多种环境条件做出策略决策的任务,如交通信号控制,强化学习常被用来优化决策过程
    • CNN也被用于图像识别任务,如通过卫星图像进行土地利用分类 和基础设施异常检测
  • 尽管取得了上述进展,城市计算仍面临一些瓶颈问题:
    • 多模态数据处理能力不足
      • 城市数据具有异构性和复杂性,包括数值传感器读数、地理空间数据、社交媒体文本信息,以及图像和视频等非结构化数据
      • 传统深度学习模型往往擅长处理单一数据类型,难以有效整合并分析多模态数据以提取可操作洞见
    • 泛化能力有限
      • 城市环境具有多样性和动态变化性,深度学习模型通常基于历史数据训练,难以适应新的模式,导致在时间和空间迁移场景中效果下降,限制了其在真实城市场景中的部署。
    • 可解释性不足
      • 城市规划和政策制定者需要透明、可解释的模型来信任和采纳建议,而传统深度学习模型往往是“黑箱”,难以提供预测背后的推理过程
    • 自动规划能力缺失
      • 城市计算中预测结果往往仍依赖专家人工干预来制定响应策略,这种依赖减慢了决策效率,阻碍了实时响应,凸显出亟需具备自主规划能力的系统
  • 近年来,LLM在城市计算中的潜力也开始受到关注
    • 在交通预测中,LLMs 能够处理交通数据中的时间和地理描述,从而提升预测能力
    • LLM还能整合非结构化数据来源,如报告和社交媒体信息,实现快速信息提取、趋势识别和情感分析
    • LLMs 的推理与规划能力已被用于旅行规划
  • ——>论文是首个专门探讨LLMs在多个城市计算领域应用的综述文章

2  背景知识

  • LLMs在多个领域取得成功,除了依赖于训练数据增加和模型参数扩展外,还归功于以下核心技术的支持:
    • Prompt Engineering(提示工程)
      • 通过设计输入文本(提示)来引导模型输出所需结果
      • 利用模板和少样本示例,LLMs能准确理解用户需求并高效完成指定任务
    • Chain of Thought(思维链,COT)
      • 鼓励模型“思考过程外显”,在得出最终答案前生成中间步骤或推理路径,从而提升输出的透明性和可靠性
    • 基于人类反馈的强化学习(RLHF)
      • 利用人类反馈优化模型输出,使其符合高质量标准
      • 反馈数据作为奖励模型的训练标签,引导模型生成更优结果
    • 参数高效微调(PEFT)
      • 包括Adapter层和LoRA等技术,使得模型在特定任务上进行微调时无需修改全部参数,从而节省计算资源并便于部署
    • 指令微调(Instruction Tuning)
      • 利用精心构造的指令数据集训练模型,以增强其任务理解能力与执行控制力
    • MoE(专家混合架构)
      • 通过“门控机制”将输入分配给不同专家子网络,提升扩展能力并减少计算开销
    • Flash Attention
      • 优化Transformer注意力机制的内存访问模式,降低内存使用、提升训练速度
    • RoPE(旋转位置编码)
      • 通过旋转矩阵编码位置信息,提升相对位置建模能力,实现无限长度序列处理与平移等变性
    • 检索增强生成(RAG)
      • 将LLM与外部知识检索结合,提高响应准确性
      • 模型先从知识库中检索相关文档,再利用其上下文进行回答,既能降低幻觉生成,也支持知识实时更新而无需重训
      • 后续如GraphRAG进一步将知识组织为图结构,借助实体关系提升上下文整合与多跳推理能力

3 城市计算中的大语言模型

3.1 智能交通系统(ITS)

3.1.1 交通预测

3.1.1.0 核心任务

  • 交通预测涵盖多个子任务,包括:
    • 交通指标预测(如流量、速度、交通指数)
    • 交通需求预测(如出租车或共享单车需求)
    • 交通数据补全(填补缺失值)
  • 交通数据通常可以表示为一个三维张量X \in \mathbb{R}^{R \times T \times F}
    • R 是区域数,T是时间步数,F是特征维度(如进出流量)
  • 交通预测的常见形式是根据 H 个历史时间步预测接下来 P 个时间步的交通状况:

    • X_{t_K+1:t_K+P} = g(X_{t_K-H+1:t_K})

  • 数据补全任务则是通过部分观测值来推断缺失的交通数据X

    • M是掩码矩阵

3.1.1.1  LLMs 增强交通预测

  • 当前研究主要围绕以下三类

LLMs 作为编码器(Encoder)

利用LLM架构进行时空编码,通过数据标记化和微调提升预测精度

ST-LLM [119]使用部分冻结的 LLM 作为主干编码器,仅微调 LayerNorm 与注意力层Chenxi Liu, Sun Yang, Qianxiong Xu, Zhishuai Li, Cheng Long, Ziyue Li, and Rui Zhao. 2024. Spatial-Temporal Large Language Model for Traffic Prediction. In MDM. 31–40. doi:10.1109/MDM61037.2024.00025
TPLLM [163]、STD-PLM [75]、STTLM [137] 则结合 LoRA 技术完成训练

Yilong Ren, Yue Chen, Shuai Liu, Boyue Wang, Haiyang Yu, and Zhiyong Cui. 2024. TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models. arXiv:2403.02221 [cs.LG] https://arxiv.org/abs/2403.0222

Ju Ma, Juan Zhao, and Yao Hou. 2024. Spatial-Temporal Transformer Networks for Traffic Flow Forecasting Using a Pre-Trained Language Model. Sensors 24, 17 (2024). https://www.mdpi.com/1424-8220/24/17/5502

 

YiHeng Huang, Xiaowei Mao, Shengnan Guo, Yubin Chen, Junfeng Shen, Tiankuo Li, Youfang Lin, and Huaiyu Wan. 2024. STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM. arXiv:2407.09096 [cs.LG] https://arxiv.org/abs/2407.09096吧

GATGPT [23] 将LLM与图注意力模型结合,用于缺失数据补全Yakun Chen, Xianzhi Wang, and Guandong Xu. 2023. GATGPT: A Pre-trained Large Language Model with Graph Attention Network for Spatiotemporal Imputation. arXiv:2311.14332 [cs.LG] https://arxiv.org/abs/2311.14332
STLLM-DF [177] 使用去噪扩散模型处理数据后再微调LLM进行预测ZhiqiShao,HaoningXi,HaohuiLu,ZeWang,MichaelG.H.Bell,andJunbinGao.2024. STLLM-DF:ASpatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting. arXiv:2409.05921 [cs.LG] https://arxiv.org/abs/2409.05921

LLMs 作为增强器 + 编码器(Enhancer & Encoder)

利用LLM对文本+时空信息编码,以增强下游模型性能

STG-LLM [123] 将文本描述与时空信息连接后输入LLM,冻结多头注意力模块进行微调Lei Liu, Shuo Yu, Runze Wang, Zhenxun Ma, and Yanming Shen. 2024. How Can Large Language Models Understand Spatial-Temporal Data? arXiv:2401.14192 [cs.LG] https://arxiv.org/abs/2401.14192
STGCN-L [103] 借助 GPT-4 API 生成区域特定的 POI 向量Peisen Li, Yizhe Pang, and Junyu Ren. 2024. Spatio-Temporal Graph Convolutional Network Combined Large Language Model: A Deep Learning Framework for Bike Demand Forecasting. arXiv:2403.15733 [cs.SI] https: //arxiv.org/abs/2403.15733
IMPEL [150] 在城市配送场景中,使用LLM根据地理文本构建节点表示和功能图,解决冷启动问题,提升模型的零样本泛化能力Tong Nie, Junlin He, Yuewen Mei, Guoyang Qin, Guilong Li, Jian Sun, and Wei Ma. 2024. Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach. arXiv:2408.17258 [cs.LG] https://arxiv.org/abs/2408.17258
GT-TDI [268] 使用语言模型生成语义张量,提升缺失值补全能力Kunpeng Zhang, Feng Zhou, Lan Wu, Na Xie, and Zhengbing He. 2024. Semantic understanding and prompt engineering for large-scale traffic data imputation. Information Fusion 102 (2024), 102038.
LLMs 作为预测器(Predictor)UrbanGPT [109] 通过提示中加入时间、城市、POI 等上下文信息,实现对交通模式的理解,在稀疏数据条件下完成预测Zhonghang Li, Lianghao Xia, Jiabin Tang, Yong Xu, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. 2024. UrbanGPT: Spatio-Temporal Large Language Models. In SIGKDD (KDD ’24). 5351–5362.
xTP-LLM [57] 使用提示+思维链(COT)增强解释性,通过文本问答+LoRA微调实现数值预测,并利用少样本学习应对预测偏差Xusen Guo, Qiming Zhang, Junyue Jiang, Mingxing Peng, Meixin Zhu, Hao, and Yang. 2024. Towards Explainable Traffic Flow Prediction with Large Language Models. arXiv:2404.02937 [cs.LG] https://arxiv.org/abs/2404.02937

3.1.2  交通管理

  • 交通管理致力于通过技术、规划和基础设施手段,管理车辆和行人流动,提升交通安全性与效率,降低拥堵、事故和出行时间

3.1.2.0 核心任务

  • 重点任务是交通信号控制(TSC)
    • 制定适应不同交通流量的信号策略,以优化通行效率
    • TSC 通常被建模为马尔可夫决策过程(MDP)
        • V^\pi(s) 在策略Π下的价值函数
        • γ折扣因子
      • 目标是找到最优策略使所有状态下的V最大化
  • 当前 TSC 方法主要分为规则驱动与强化学习驱动两类。
    • 规则方法如周期信号控制和贪婪策略
    • 强化学习方法则以平均等待时间、排队长度为奖励目标,通过与环境交互优化信号策略

3.1.2.1 LLMs 优化交通管理

LLMs 作为增强器(Enhancer)PromptGAT [29] 使用场景模拟数据生成动态交通指标,辅助RL模型设计应对复杂天气的策略Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. 2024. Prompt to Transfer: Sim-to-Real Transfer for Traffic Signal Control with Prompt Learning. In AAAI. 82–90.
iLLM-TSC [159] 利用LLM评估并优化 RL 决策AoyuPang,MaonanWang,Man-OnPun,ChungShueChen,andXiXiong.2024. iLLM-TSC:Integrationreinforcement learning and large language model for traffic signal control policy improvement. arXiv:2407.06025 [cs.AI] https: //arxiv.org/abs/2407.06025
TransGPT [214] 针对交通标识识别、场景理解与驾驶建议等构建多模态大模型Peng Wang, Xiang Wei, Fangxu Hu, and Wenjuan Han. 2024. TransGPT: Multi-modal Generative Pre-trained Transformer for Transportation. arXiv:2402.07233 [cs.CL] https://arxiv.org/abs/2402.07233
LLMlight [94] 推出 LightGPT 模型,结合评价网络与提示控制交通信号灯Siqi Lai, Zhao Xu, Weijia Zhang, Hao Liu, and Hui Xiong. 2024. LLMLight: Large Language Models as Traffic Signal Control Agents. arXiv:2312.16044 [cs.AI] https://arxiv.org/abs/2312.16044
LLMs 作为代理体(Agent)OpenTI [30]、TrafficGPT [270] 将提示工程与 COT 融入框架,调度外部工具处理导航、地理查询、报告分析等任务

Longchao Da, Kuanru Liou, Tiejin Chen, Xuesong Zhou, Xiangyong Luo, Yezhou Yang, and Hua Wei. 2023. Open-TI: OpenTrafficIntelligence with Augmented Language Model. arXiv:2401.00211 [cs.AI] https://arxiv.org/abs/2401.00211

Siyao Zhang, Daocheng Fu, Wenzhe Liang, Zhao Zhang, Bin Yu, Pinlong Cai, and Baozhen Yao. 2024. TrafficGPT: Viewing, processing and interacting with traffic foundation models. Transport Policy 150 (2024), 95–105.

TP-GPT [207] 引入多代理协作检索与生成Bingzhang Wang, Zhiyu Cai, Muhammad Monjurul Karim, Chenxi Liu, and Yinhai Wang. 2024. Traffic Performance GPT (TP-GPT): Real-Time Data Informed Intelligent ChatBot for Transportation Surveillance and Management. arXiv:2405.03076 [cs.MA] https://arxiv.org/abs/2405.03076
LA-Light [212] 利用感知-决策系统收集实时交通数据与控制建议Maonan Wang, Aoyu Pang, Yuheng Kan, Man-On Pun, Chung Shue Chen, and Bo Huang. 2024. LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments. arXiv:2403.08337 [eess.SY] https://arxiv.org/abs/2403.08337
LLMs 作为助手(Assistant)[203] 验证LLM能协助非专家高效完成交通管理任务Michael Villarreal, Bibek Poudel, and Weizi Li. 2023. Can ChatGPT Enable ITS? The Case of Mixed Traffic Control via Reinforcement Learning. In IEEE ITSC). 3749–3755.
[31, 141, 192] 探讨人类工程师与LLM协作的效果,实验表明LLM能理解交通场景并提供合理建议Yiqing Tang, Xingyuan Dai, Chen Zhao, Qi Cheng, and Yisheng Lv. 2024. Large Language Model-Driven Urban Traffic Signal Control. In ANZCC. 67–71.

Sari Masri, Huthaifa I. Ashqar, and Mohammed Elhenawy. 2024. Leveraging Large Language Models (LLMs) for Traffic Management at Urban Intersections: The Case of Mixed Traffic Scenarios. arXiv:2408.00948 [cs.CL] https: //arxiv.org/abs/2408.00948

Xingyuan Dai, Yiqing Tang, Yuanyuan Chen, Xiqiao Zhang, and Yisheng Lv. 2024. Large Language Model-Powered Digital Traffic Engineers: The Framework and Case Studies. IEEE Journal of Radio Frequency Identification (2024).

 3.1.3 智能交通系统的未来可扩展性

  • 论文预计未来LLMs将在以下两方面显著增强 ITS:
    • 提升数据分析能力
      • LLMs 擅长处理来自社交媒体、事故报告、司机反馈等非结构化文本,能够快速识别交通事件、封路或危险状况,从而提升响应效率与安全性。

    • 预测城市事件影响

      • LLMs 对上下文和语义的理解能力使其适合预测演唱会、体育赛事、突发天气等事件对交通流量的影响

      • 与现有模型结合后,ITS 能更好地预测并采取主动管理,如动态信号调节、提前路径建议等,以缓解拥堵。

3.2 公共安全

  • 城市计算在公共安全领域通过先进分析技术预测并缓解城市风险,如犯罪与交通事故

3.2.1 核心任务

  • 主要任务包括交通事故预测与犯罪预测
    • X_{t_K+1:t_K+P} = g(X_{t_K-H+1:t_K})类似
    • 数据张量 X 的特征维度 F包含事故类型(如轻微或严重)或犯罪类型(如抢劫、盗窃)
    • 也可被建模为分类任务,预测特定事件是否发生
  • 交通事故预测通常融合多种数据,如卫星图像、环境因素及危险驾驶行为统计,以实现更全面分析

3.2.2 LLMs 助力更安全城市

LLMs 作为编码器与预测器

探讨将 LLM 用于文本编码与预测任务的效果

[54] 将 LLM 与机器学习算法结合,用于事故严重性分类,借助 LLM 编码文本生成特征向量Artur Grigorev, Khaled Saleh, Yuming Ou, and Adriana-Simona Mihaita. 2024. Enhancing Traffic Incident Management with Large Language Models: A Hybrid Machine Learning Approach for Severity Classification. arXiv:2403.13547 [cs.LG] https://arxiv.org/abs/2403.13547
[170] 对 BART 和 GPT 在犯罪预测任务中进行零样本、少样本与微调测试,发现 GPT-4 在零样本预测中优于 GPT-3 微调版本与随机森林Paria Sarzaeim, Qusay H. Mahmoud, and Akramul Azim. 2024. Experimental Analysis of Large Language Models in Crime Classification and Prediction. Canadian AI (2024)
UrbanGPT [109] 通过指令微调学习城市动态,实现先进的犯罪零样本预测Zhonghang Li, Lianghao Xia, Jiabin Tang, Yong Xu, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. 2024. UrbanGPT: Spatio-Temporal Large Language Models. In SIGKDD (KDD ’24). 5351–5362.
LLMs 作为助手[282] 提出设计蓝图,将 LLM 用于自动生成事故报告、丰富交通数据、传感器安全分析Ou Zheng, Mohamed Abdel-Aty, Dongdong Wang, Zijin Wang, and Shengxuan Ding. 2023. ChatGPT is on the Horizon: Could a Large Language Model be Suitable for Intelligent Traffic Safety Research and Applications? arXiv:2303.05382 [cs.CL] https://arxiv.org/abs/2303.05382
WatchOverGPT [173] 利用可穿戴设备与 LLM 实现犯罪实时识别与响应Abdur R. Shahid, Syed Mhamudul Hasan, Malithi Wanniarachchi Kankanamge, Md Zarif Hossain, and Ahmed Imteaj. 2024. WatchOverGPT: A Framework for Real-Time Crime Detection and Response Using Wearable Camera and Large Language Model. In IEEE (COMPSAC. 2189–2194.
[147]、[279] 用 LLM 分析事故类型、责任方与严重程度Maroa Mumtarin, Md Samiullah Chowdhury, and Jonathan Wood. 2023. Large Language Models in Analyzing Crash Narratives– A Comparative Study of ChatGPT, BARD and GPT-4. arXiv:2308.13563 [cs.CL] https://arxiv.org/abs/ 2308.13563
[67] 用于火灾工程问答Haley Hostetter, M.Z. Naser, Xinyan Huang, and John Gales. 2024. The role of large language models (AI chatbots) in f ire engineering: An examination of technical questions against domain knowledge. Natural Hazards Research (2024).
[289] 将事件图像帧输入多模态 LLM 识别交通违规Xingcheng Zhou and Alois C. Knoll. 2024. GPT-4V as Traffic Assistant: An In-depth Look at Vision Language Model on Complex Traffic Events. arXiv:2402.02205 [cs.CV] https://arxiv.org/abs/2402.02205
LLMs 作为增强器[20] 设计支持决策系统,将 LLM 与知识图谱整合,用于结构化应急文档Minze Chen, Zhenxiang Tao, Weitong Tang, Tingxin Qin, Rui Yang, and Chunli Zhu. 2024. Enhancing emergency decision-making with knowledge graphs and large language models. International Journal of Disaster Risk Reduction 113 (2024), 104804.
[34] 结合 LLM 与深度网络预测事故,并为司机提供行为建议I. de Zarzà, J. de Curtò, Gemma Roig, and Carlos T. Calafate. 2023. LLM Multimodal Traffic Accident Forecasting. Sensors 23, 22 (2023).
[155] 将 LLM 引入应急响应系统,对灾难数据集进行微调以提升 911 调度效率Hakan T. Otal, Eric Stern, and M. Abdullah Canbaz. 2024. LLM-Assisted Crisis Management: Building Advanced LLM Platforms for Effective Emergency Response and Public Collaboration. In IEEE CAI. 851–859.
[281] 推出 TrafficSafetyGPT,融合 Road Safety Manual 和 ChatGPT 指令进行训练OuZheng,MohamedAbdel-Aty,DongdongWang,ChenzhuWang,andShengxuanDing.2023. TrafficSafetyGPT:Tun ingaPre-trainedLargeLanguageModeltoaDomain-SpecificExpertinTransportationSafety. arXiv:2307.15311[cs.CL] https://arxiv.org/abs/2307.15311

3.2.3 用 LLM 守护未来城市

  • 传统深度模型虽考虑天气、拥堵等因素,但存在“黑箱”问题,缺乏可解释性
  • 相比之下,LLM 可在更高语义层面处理信息,实现辅助因素的精细建模与透明预测
  • 结合思维链(COT)提示微调,有助于系统性地分析并提供解释性决策结果

3.3 城市出行(Urban Mobility)

3.3.1 核心任务

  • H为历史轨迹
  • C为上下文信息(如当前停留、用户画像)
  • K为外部知识(如 POI、路网)
  • 当 n = k + 1,是下一个位置预测任务;n > k + 1,则是轨迹生成

3.3.2 LLMs 赋能城市出行

LLMs 作为编码器与增强器

轨迹编码PLMTraj [291]、[128] 用 LLM 从原始轨迹提取语义特征Zeyu Zhou, Yan Lin, Haomin Wen, Shengnan Guo, Jilin Hu, Youfang Lin, and Huaiyu Wan. 2024. PLM4Traj: Cognizing Movement Patterns and Travel Purposes from Trajectories with Pre-trained Language Models. arXiv preprint arXiv:2405.12459 (2024).
POI 编码POI GPT [88]、M3PT [247]、LARR [206] 对 POI 文本、图像、场景等信息生成嵌入

JinkyuKim,AnnaRohrbach,TrevorDarrell,JohnCanny,andZeynepAkata.2018. Textualexplanationsforself-driving vehicles. In ECCV. 563–578.

Zhizhong Wan, Bin Yin, Junjie Xie, Fei Jiang, Xiang Li, and Wei Lin. 2024. LARR: Large Language Model Aided Real-time Scene Recommendation with Semantic Understanding. In RecSys. 23–32.

Jingsong Yang, Guanzhou Han, Deqing Yang, Jingping Liu, Yanghua Xiao, Xiang Xu, Baohua Wu, and Shenghua Ni. 2023. M3PT: A Multi-Modal Model for POI Tagging. In SIGKDD. 5382–5392.

多模态编码ReFound [237]、CityGPT [46] 将文本、图像、空间信息结合,使用对比学习与知识蒸馏等方法优化表示,支持下游 POI 分类、轨迹理解与推荐Congxi Xiao, Jingbo Zhou, Yixiong Xiao, Jizhou Huang, and Hui Xiong. 2024. ReFound: Crafting a Foundation Model for Urban Region Understanding upon Language and Visual Foundations. In SIGKDD. 3527–3538.

Jie Feng, Yuwei Du, Tianhui Liu, Siqi Guo, Yuming Lin, and Yong Li. 2024. CityGPT: Empowering Urban Spatial Cognition of Large Language Models. arXiv preprint arXiv:2406.13948 (2024).
LLMs 作为预测器下一个位置预测[7, 49, 216] 表明无需特定城市训练也能准确预测

ShanshanFeng,HaomingLyu,FanLi,ZhuSun,andCaishunChen.2024. Wheretomovenext:Zero-shotgeneralization of llms for next poi recommendation. In IEEE CAI. IEEE, 1530–1535.

Ciro Beneduce, Bruno Lepri, and Massimiliano Luca. 2024. Large Language Models are Zero-Shot Next Location Predictors. arXiv preprint arXiv:2405.20962 (2024).

Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. 2023. Where would i go next? large language models as human mobility predictors. arXiv preprint arXiv:2308.15197 (2023).

聚合流预测LLM-COD [255]、LLM-MPE [113] 专注于活动引发的人流波动

Chenyang Yu, Xinpeng Xie, Yan Huang, and Chenxi Qiu. 2024. Harnessing LLMs for Cross-City OD Flow Prediction. arXiv preprint arXiv:2409.03937 (2024).

Yuebing Liang, Yichao Liu, Xiaohan Wang, and Zhan Zhao. 2024. Exploring large language models for human mobility prediction under public events. Computers, Environment and Urban Systems 112 (2024), 102153.

POI 推荐方面LAMP [5]、LLM4POI [102] 利用 LLM 的语义理解能力生成个性化位置建议Peibo Li, Maarten de Rijke, Hao Xue, Shuang Ao, Yang Song, and Flora D Salim. 2024. Large language models for next point-of-interest recommendation. In SIGIR. 1463–1472.

Pasquale Balsebre, Weiming Huang, and Gao Cong. 2024. LAMP: A Language Model on the Map. arXiv preprint arXiv:2403.09059 (2024).
LLMs 作为代理体AgentMove [47] 将复杂任务分解为子任务,逐步调用 LLM 执行Jie Feng, Yuwei Du, Jie Zhao, and Yong Li. 2024. AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework. arXiv preprint arXiv:2408.13986 (2024).
CoPB [174]、MobAgent [104] 将行为理论(如计划行为理论)注入LLM,引导生成更现实的行为

Xuchuan Li, Fei Huang, Jianrong Lv, Zhixiong Xiao, Guolong Li, and Yang Yue. 2024. Be More Real: Travel Diary Generation Using LLM Agents and Individual Profiles. arXiv preprint arXiv:2407.18932 (2024).

Chenyang Shao, Fengli Xu, Bingbing Fan, Jingtao Ding, Yuan Yuan, Meng Wang, and Yong Li. 2024. Chain-of-planned behaviour workflow elicits few-shot mobility generation in LLMs. arXiv preprint arXiv:2402.09836 (2024).

LLMob [211]、MobilityGPT [64] 将 LLM 视为“虚拟市民”,模拟人类的日常移动行为。该类方法注重语义解释与现实约束,尤其适合疫情等复杂情境,但计算和设计复杂度更高。

Jiawei Wang, Renhe Jiang, Chuang Yang, Zengqing Wu, Makoto Onizuka, Ryosuke Shibasaki, Noboru Koshizuka, and Chuan Xiao. 2024. Large language models as urban residents: An llm agent framework for personal mobility generation. arXiv preprint arXiv:2402.14744 (2024).

Ammar Haydari, Dongjie Chen, Zhengfeng Lai, Michael Zhang, and Chen-Nee Chuah. 2024. Mobilitygpt: Enhanced human mobility modeling with a gpt model. arXiv preprint arXiv:2402.03264 (2024).

3.3.3  从预测走向城市智能

  • 构建多代理系统,由专属 LLM 代理管理不同子任务(语义建模、预测、推理)
  • 采用标准通信协议与 RAG 增强实时城市数据接入
  • 推进因果建模框架,既预测移动,也解释其背后动因
  • 开展联邦学习支持隐私保护
  • 利用卫星图像、环境传感器等多模态输入进一步增强出行建模能力

3.4 环境监测

3.4.1 核心任务

  • 基于历史数据预测未来环境状态
    • 和交通预测类似,其中张量 X 的特征维度 F 表示环境因素的数量,如气象信息、空气质量指数(AQI)、水质指标等

3.4.2 LLM 助力环境监测

LLMs 作为预测器与编码器PromptCast [242]将时间序列预测转化为文本生成任务Hao Xue and Flora D Salim. 2023. Promptcast: A new prompt-based learning paradigm for time series forecasting. IEEE TKDE (2023).
STELLM [231]将风速序列分解为季节性和趋势等组成部分,通过嵌入提示提升预测精度Tangjie Wu and Qiang Ling. 2024. STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting. Applied Energy 375 (2024), 124034.
LLMs 作为助手[236] 基于 T5 构建台风问答系统,结合领域微调和 RAG 提升查询准确性Yongqi Xia, Yi Huang, Qianqian Qiu, Xueying Zhang, Lizhi Miao, and Yixiang Chen. 2024. A Question and Answering Service of Typhoon Disasters Based on the T5 Large Language Model. ISPRS International Journal of Geo-Information 13, 5 (2024), 165.
[188] 提出 ZFDDA 模型,用于洪灾视觉问答,通过 COT 提示无需预训练即可提升灾害响应Yimin Sun, Chao Wang, and Yan Peng. 2023. Unleashing the Potential of Large Language Model: Zero-shot VQA for Flood Disaster Scenario. In ICAICE. 368–373.
QuakeBERT [60] 针对社交媒体文本进行地震影响分析,识别物理与社会影响Jin Han, Zhe Zheng, Xin-Zheng Lu, Ke-Yin Chen, and Jia-Rui Lin. 2024. Enhanced Earthquake Impact Analysis based on Social Media Texts via Large Language Model. International Journal of Disaster Risk Reduction (2024), 104574
Arabic Mini-ClimateGPT [146] 专为阿拉伯语气候对话设计,结合向量检索增强信息访问Sahal Mullappilly, Abdelrahman Shaker, Omkar Thawakar, Hisham Cholakkal, Rao Anwer, Salman Khan, and Fahad Khan. 2023. Arabic Mini-ClimateGPT : A Climate Change and Sustainability Tailored Arabic LLM. In Findings of EMNLP. 14126–14136.
ClimateBert [220]、climateGPT2 [199] 分别在气候文本上预训练/微调,增强气候文本的分类、事实核查与生成能力Saeid A Vaghefi, Christian Huggel, Veruska Muccione, Hamed Khashehchi, and Markus Leippold. 2022. Deep climate change: A dataset and adaptive domain pre-trained language models for climate change related tasks. In NeurIPS workshop on tackling climate change with machine learning.

Nicolas Webersinke, Mathias Kraus, Julia Anna Bingler, and Markus Leippold. 2022. ClimateBert: A Pretrained Language Model for Climate-Related Text. arXiv:2110.12010 [cs.CL] https://arxiv.org/abs/2110.12010
LLMs 作为增强器ChatClimate [200] 将 IPCC AR6 报告整合进 LLM 提供可信气候信息Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Mathias Kraus, Simon Allen, Chiara Colesanti-Senni, Tobias Wekhof, Tobias Schimanski, et al. 2023. ChatClimate: Grounding conversational AI in climate science. Communications Earth & Environment 4, 1 (2023), 480.
将 LLM 与 GIS(地理信息系统)结合,提升洪灾风险感知 [293]Jun Zhu, Pei Dang, Yungang Cao, Jianbo Lai, Yukun Guo, Ping Wang, and Weilian Li. 2024. A flood knowledge constrained large language model interactable with GIS: enhancing public risk perception of floods. International Journal of Geographical Information Science 38, 4 (2024), 603–625.
[209] 提出地震后人员伤亡估计框架,利用多语言社交媒体中的信息构建层次化的 LLM 模型进行事实发现与伤亡估算Chenguang Wang, Davis Engler, Xuechun Li, James Hou, David J Wald, Kishor Jaiswal, and Susu Xu. 2024. Near real-time earthquake-induced fatality estimation using crowdsourced data and large-language models. International Journal of Disaster Risk Reduction 111 (2024), 104680.
LLMs 作为代理体(Agent)[92] 提出一个代理框架,从 ClimateWatch 等平台和互联网检索碳排放数据,生成精确的气候信息,表明 LLM 可通过集成实时工具实现可靠的环境智能监控Mathias Kraus, Julia Anna Bingler, Markus Leippold, Tobias Schimanski, Chiara Colesanti Senni, Dominik Stammbach, Saeid Ashraf Vaghefi, and Nicolas Webersinke. 2023. Enhancing large language models with climate resources. arXiv preprint arXiv:2304.00116 (2023).

3. 4.3 未来展望

  • 更深入地整合多模态数据流(文本、图像、传感器数据)与 AI 工具,实现更完整的监测体系
    • 这将支持早期预警、预测建模和实时响应,显著增强环境管理的效率与效果

3.5 旅行规划(Travel Planning)

3.5.1 主要任务

  • 旅行规划可形式化为一个多目标优化问题,目标是最大化满意度 S(如舒适度、偏好匹配)并最小化成本 C(如交通、住宿)
  • 在 LLM 出现前,该任务常被建模为 POI 规划或推荐问题

3.5.2 应用 LLM 实现精细化旅行规划

LLMs 作为编码器

使用旅行相关数据集对 LLM 进行微调

[142] 利用 Reddit 旅行数据集训练的 QLoRA + RAFT Chatbot,结合 RLHF 提升性能Sonia Meyer, Shreya Singh, Bertha Tam, Christopher Ton, and Angel Ren. 2024. A Comparison of LLM Finetuning Methods & Evaluation Metrics with Travel Chatbot Use Case. arXiv:2408.03562 [cs.CL] https://arxiv.org/abs/2408. 03562
TourLLM [223] 使用 Qwen 模型,结合 LoRA 微调多样旅行数据,优化景点介绍与行程推荐Qikai Wei, Mingzhi Yang, Jinqiang Wang, Wenwei Mao, Jiabo Xu, and Huansheng Ning. 2024. TourLLM: Enhancing LLMs with Tourism Knowledge. arXiv:2407.12791 [cs.CL] https://arxiv.org/abs/2407.12791
LLMs 作为预测器

研究表明 LLM 在推理旅行需求方面具有优势
[6] 实验发现 GPT-4 与 Mistral-7B 分别在商业与开源模型中表现最佳SimoneBarandoni,Filippo Chiarello, Lorenzo Cascone, Emiliano Marrale, and Salvatore Puccio. 2024. Automating Cus tomerNeedsAnalysis:AComparativeStudyofLargeLanguageModelsintheTravelIndustry. arXiv:2404.17975[cs.CL] https://arxiv.org/abs/2404.17975
[262], [143] 通过整合用户画像、历史数据等,提升出行方式选择预测能力,尽管 LLM 未专门训练于该任务,仍优于传统方法。Sonia Meyer, Shreya Singh, Bertha Tam, Christopher Ton, and Angel Ren. 2024. A Comparison of LLM Finetuning Methods & Evaluation Metrics with Travel Chatbot Use Case. arXiv:2408.03562 [cs.CL] https://arxiv.org/abs/2408. 03562

Xuehao Zhai, Hanlin Tian, Lintong Li, and Tianyu Zhao. 2024. Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach. arXiv:2406.13558 [cs.AI] https://arxiv.org/abs/2406.13558

LLMs 作为代理体

将 LLM 与外部工具集成,构建文字化的旅行任务流程,简化用户操作

TravelPlanner [239] 与 TravelAgent [17] 利用提示工程与地图 API、距离计算等工具,结合多维约束生成最优多日行程Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024. TravelPlanner: A Benchmark for Real-World Planning with Language Agents. In ICML (Proceedings of Machine Learning Research, Vol. 235). PMLR, 54590–54613.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. 2024. TravelAgent: An AI Assistant for Personalized Travel Planning. arXiv:2409.08069 [cs.AI] https://arxiv.org/abs/2409.08069

 
[62] 将需求转化为 SMT 问题,由 LLM 生成 Python 代码操作 SMT 解算器进行优化Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. 2024. Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools. arXiv:2404.11891 [cs.AI] https://arxiv.org/abs/2404.11891
[99] 提取旅行关键信息并生成优化方程,结合遗传算法优化路径Bohang Li, Kai Zhang, Yiping Sun, and Jianke Zou. 2024. Research on Travel Route Planning Optimization based on Large Language Model. In DOCS. 352–357.
ITINERA [193] 使用分层 TSP 聚类 POI 并生成最佳路径Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Zhaofeng Wu, Dingyi Zhuang, Jushi Kai, Kebing Hou, Xiaotong Guo, Jinhua Zhao, Zhan Zhao, and Wei Ma. 2024. ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning. arXiv:2402.07204 [cs.AI] https://arxiv.org/abs/2402.07204
TRIP-PAL [33] 用 LLM 收集景点、停留时间等信息,交由自动规划器生成最终行程Tomas de la Rosa, Sriram Gopalakrishnan, Alberto Pozanco, Zhen Zeng, and Daniel Borrajo. 2024. TRIP-PAL: Travel Planning with Guarantees by Combining Large Language Models and Automated Planners. arXiv:2406.10196 [cs.AI]

3.5.3 下一代旅行规划的关键方向

  • 多模态信息利用

    • 视觉数据(图像、视频)能提供丰富的旅游情境、酒店设施、美食展示等细节

  • 集成预订链接

    • 将交通、酒店、景点的直达预订接口嵌入行程规划中,提升便利性,可通过代理协作完成

  • 边缘侧部署

    • 为保护隐私,可结合知识蒸馏与模型压缩技术,在本地设备部署轻量化 LLM,实现在地、私密且高效的旅行规划服务

3.6 城市规划与发展(Urban Planning and Development)

系统整合来自交通、人口密度、基础设施使用等多源数据,旨在优化城市设计、提升资源分配效率,并改善居民生活质量

3.6.1 核心任务

  • 智能城市规划的任务大致可分为以下几类
    • 分类任务(如区域类型识别);

    • 回归任务(如人口密度估计);

    • 问答任务(如城市知识答复);

    • 系统优化任务(如生成规划解决方案)。

3.6.2 LLM 驱动城市发展

LLMs 作为助手(Assistant)

LLMs 利用其知识与推理能力,分析海量数据辅助规划决策

HSC-GPT [161] 训练于城市规划、园林设计与建筑学数据,理解空间语义,生成创意设计
UrbanLLM [80] 微调于 LLAMA-2-7B,能自动将用户查询拆解为子任务,选择适配 AI 模型生成方案,减少对人类专家依赖

LLMs 作为代理体(Agent)

 

城市规划中的自主代理系统

[290] 提出多代理框架,模拟公众参与式规划,其中 LLM 代理代表规划师与社区,共创土地使用方案。该系统在北京部署后,在服务可达性、生态指标与居民满意度上优于人类专家
PlanGPT [292] 是专为城市规划设计的 LLM,结合数据库检索、领域微调与工具调用,具备文本生成、信息提取与文档分析等多重能力

3.6.3 LLM 创新塑造未来城市

  • 分析规划文档、影响报告与公众反馈,从海量文本中提取人类难以察觉的信息
  • 多模态处理能力,可融合卫星图像、CAD 设计图与 GIS 地图,实现对空间关系与城市发展模式的全面分析

3.7 智能能源管理(Smart Energy Management)

3.7.1 核心任务

  • 和交通预测类似,只是此时使用的数据为:
    • ETT-X(电网负载预测);

    • Electricity(电力消耗预测)

3.7.2 LLM 提升能源管理能力

LLMs 作为编码器(Encoder)

使用 LLM 编码器提取时序依赖

[288] 使用 GPT-2 编码器,冻结注意力层与前馈层,并用线性层解码预测值
LLM4TS [15] 探索了 PEFT 与全参数微调等多种调优方式
[189] 的消融实验表明 LLM 在时间序列任务中与传统编码器表现相当
LLMs 作为增强器 + 编码器(Enhancer & Encoder)AutoTimes [129] 将时间序列切片并进行位置编码,再由 LLM 解码
TEMPO [13] 使用提示机制引导 LLM 关注时间序列的趋势、季节性等组成部分,使用 LoRA 微调
UniTime [126] 使用语言模型识别领域特征,缓解多领域混淆
TIME-FFM [125] 结合联邦学习与文本模态对齐技术,在保障隐私的同时实现多领域时间序列预测
TIME-LLM [83] 用 Patch Reprogramming 将时间序列转化为 LLM 可理解的“文本原型”
TEST [185] 选取描述性词作为原型,通过对比学习对齐时间序列与词向量
S2IP-LLM [157] 基于语义锚点提示增强对齐
[124] 结合降维词嵌入与交叉注意力机制,提高对齐质量
[190] 实验证明:LLM 在趋势明显、有季节性的数据序列上表现更优
LLMs 作为预测器(Predictor)[55] 通过数据标记化,实现 LLM 对数值能源数据的理解与零样本预测
[243] 使用提示机制嵌入能源信息,并对 LLM 进行自回归预测微调

3.7.3 智能能源管理的未来图景

  • 提升解释性:将预测结果转化为人类可读的解释,帮助用户理解能源使用变化背后的逻辑;

  • 智能代理控制:结合 API 工具与思维链(COT)分析,设计能源控制与调度策略,提升电网效率与弹性;

  • 应对供需波动与可再生能源不稳定性:通过实时决策与适配能力,支撑现代能源系统的智能化升级。

3.8 地学(Geoscience)

涵盖遥感图像、城市道路网络和地理文本资料

3.8.2 LLM 赋能地学研究

LLMs 作为预测器GPT4GEO [166] 测试 GPT-4 的地理事实知识与解释能力
[145] 探讨 ChatGPT 在 GIS 语境下对空间概念的理解
[8] 验证 LLM 处理地理问答的能力,包括地理知识、空间意识与推理技巧
LLM 应用于图像地理定位 [101, 218]
自然语言地理猜测 [132]
图像与社媒数据中提取地理信息 [249]
多语言地理实体识别 [91]
地理偏差分析 [139, 144]
MapGPT [51] 采用 RAG 技术增强对地理查询的响应
GeoFormer [181] 训练语言模型用于预测人类移动行为
K2 [35]BB-GeoGPT [274] 构建地理知识强化的微调数据集,提高 LLM 对地理问答的准确性
LLMs 作为增强器(Enhancer)GeoLM [112] 使用对比学习与 MLM 在地理数据上训练模型,应用于地名识别、地理实体分类与关系抽取
QUERT [238] 通过四个定制任务增强旅游查询性能
UrbanCLIP [244] 将图像-文本 LLM 应用于卫星图像,创建图文对提升如人口预测、GDP 估计等城市分析任务
LLMs 作为代理体(Agent)GEOLLM-Engine Benchmark [180] 用于评估地理智能助手性能
GeoQAMap [50] 将地理问答转为 SPARQL 查询并生成交互式地图
Map GPT Playground [263] 借助地图服务增强地理查询
GeoAgent [73] 标准化地址信息
GeoSEE [61] 选取合适模块估算社会经济指标
GeoGPT [275] 集成 LLM 与 GIS 工具,自动化地理工作流程
GOMAA-GeoGOal [169] 实现目标模态下零样本泛化
UrbanKGent [151] 仅基于少量数据构建城市知识图谱

3.9 自动驾驶

  • 自动驾驶系统利用摄像头、雷达和激光雷达等传感器采集车辆周围的实时数据,结合车载计算设备,实现对障碍物识别、交通标志解读和道路状况适应,从而提升驾驶安全与效率

4 评估指标与数据资源

4.1 交通

交通流PEMS07 [254]Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In IJCAI. International Joint Conferences on Artificial Intelligence Organization, 3634–3640.
PEMS-BAY, METR-LA [105]Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional Recurrent Neural Network: Data Driven Traffic Forecasting. In ICLR.
交通速度Q-Traffic [106]Zhonghang Li, Chao Huang, Lianghao Xia, Yong Xu, and Jian Pei. 2022. Spatial-Temporal Hypergraph Self-Supervised Learning for Crime Prediction. In IEEE ICDE. 2984–2996.
Traffic4X [260]Yuan Yuan, Jingtao Ding, Jie Feng, Depeng Jin, and Yong Li. 2024. UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction. In SIGKDD (KDD ’24). 4095–4106.
SZ-TAXI [277]Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. 2020. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE TITS 21, 9 (2020), 3848–3858.
交通图LOOP-SEATTLE [28]Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. 2020. Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting. IEEE TITS 21, 11 (2020), 4883–4894.
ROTTERDAM [100]Guopeng Li, Victor L. Knoop, and Hans van Lint. 2021. Multistep traffic forecasting by dynamic graph convolution: Interpretations of real-time spatial correlations. Transportation Research Part C: Emerging Technologies 128 (2021), 103185.
出行轨迹Chengdu-taxi, Shenzhen-didi [133]Bin Lu, Xiaoying Gan, Weinan Zhang, Huaxiu Yao, Luoyi Fu, and Xinbing Wang. 2022. Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer. In SIGKDD (KDD ’22). 1162–1172
人群流TaxiBJ [267]Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual networks for citywide crowd flows prediction. In AAAI (San Francisco, California, USA) (AAAI’17). AAAI Press, 1655–1661.
BJ-SW [265]Jing Zhang, Fu Xiao, Ao Li, Tianyou Ma, Kan Xu, Hanbei Zhang, Rui Yan, Xing Fang, Yuanyang Li, and Dan Wang. 2023. Graph neural network-based spatio-temporal indoor environment prediction and optimal control for central air-conditioning systems. Building and Environment 242 (2023), 110600.
HZ-SH-METRO [122]Lingbo Liu, Jingwen Chen, Hefeng Wu, Jiajie Zhen, Guanbin Li, and Liang Lin. 2022. Physical-Virtual Collaboration Modeling for Intra- and Inter-Station Metro Ridership Prediction. IEEE TITS 23, 4 (2022), 3377–3391. doi:10.1109/ TITS.2020.3036057
出租车T-Drive [258]Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories. In SIGSPATIAL (GIS ’10). 99–108.
SHC-TAXI, CHI-TAXI [109]Zhonghang Li, Lianghao Xia, Jiabin Tang, Yong Xu, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. 2024. UrbanGPT: Spatio-Temporal Large Language Models. In SIGKDD (KDD ’24). 5351–5362.
单车NYC-BIKE, CHI-BIKE, DC-BIKE [85]Yilun Jin, Kai Chen, and Qiang Yang. 2022. Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting. In SIGKDD. 731–741.
信号灯数据Manhattan-SN [18]Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li. 2020. Toward AThousand Lights: Decentralized Deep Reinforcement Learning for Large-Scale Traffic Signal Control. In AAAI. 3414–3421.
NYC-SN [221]Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li. 2019. CoLight: Learning Network-level Cooperation for Traffic Signal Control. In CIKM (CIKM ’19). 1913–1922.

4.2  公共安全

犯罪NYC-Crime, CHI-Crime [106]Zhonghang Li, Chao Huang, Lianghao Xia, Yong Xu, and Jian Pei. 2022. Spatial-Temporal Hypergraph Self-Supervised Learning for Crime Prediction. In IEEE ICDE. 2984–2996.
SF-Crime [82]Guangyin Jin, Chenxi Liu, Zhexu Xi, Hengyu Sha, Yanyun Liu, and Jincai Huang. 2022. Adaptive Dual-View WaveNet for urban spatial–temporal event prediction. Information Sciences 588 (2022), 315–330
交通事故NYC-accident, CHI-accident [208]Beibei Wang, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2021. GSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk Forecasting. In AAAI. 4402–4409.

4.3  城市出行

POI 签到数据Foursquare-NYC, Foursquare-Tokyo [246]Dingqi Yang, Daqing Zhang, Vincent WZheng,andZhiyongYu.2014. Modelinguseractivity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE SMC 45, 1 (2014), 129–142.
Gowalla [25]Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility: user movement in location-based social networks. In SIGKDD. 1082–1090.
Yelp [217]Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat: Knowledge graph attention network for recommendation. In SIGKDD. 950–958.
MPTD1, MPTD2 [247]Jingsong Yang, Guanzhou Han, Deqing Yang, Jingping Liu, Yanghua Xiao, Xiang Xu, Baohua Wu, and Shenghua Ni. 2023. M3PT: A Multi-Modal Model for POI Tagging. In SIGKDD. 5382–5392.
GPS 轨迹数据Geolife [285]Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2 (2010), 32–39.
Portal-taxi [79]Wenjun Jiang, Wayne Xin Zhao, Jingyuan Wang, and Jiawei Jiang. 2023. Continuous trajectory generation based on two-stage GAN. In AAAI. 4374–4382.

4.4  环境监测 Environmental

天气条件Weather [286]Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In AAAI. 11106–11115.
City Temperature (CT) [242]Hao Xue and Flora D Salim. 2023. Promptcast: A new prompt-based learning paradigm for time series forecasting. IEEE TKDE (2023).
灾害事件DSWEL, DSWE2, NREL, SDWPF [231]Tangjie Wu and Qiang Ling. 2024. STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting. Applied Energy 375 (2024), 124034.
Global Earthquake Event [209]Chenguang Wang, Davis Engler, Xuechun Li, James Hou, David J Wald, Kishor Jaiswal, and Susu Xu. 2024. Near real-time earthquake-induced fatality estimation using crowdsourced data and large-language models. International Journal of Disaster Risk Reduction 111 (2024), 104680.
气候Clima30-Instruct [146]Sahal Mullappilly, Abdelrahman Shaker, Omkar Thawakar, Hisham Cholakkal, Rao Anwer, Salman Khan, and Fahad Khan. 2023. Arabic Mini-ClimateGPT : A Climate Change and Sustainability Tailored Arabic LLM. In Findings of EMNLP. 14126–14136.
FFD-IQA [188]Yimin Sun, Chao Wang, and Yan Peng. 2023. Unleashing the Potential of Large Language Model: Zero-shot VQA for Flood Disaster Scenario. In ICAICE. 368–373.
Climate Fever [199]Saeid A Vaghefi, Christian Huggel, Veruska Muccione, Hamed Khashehchi, and Markus Leippold. 2022. Deep climate change: A dataset and adaptive domain pre-trained language models for climate change related tasks. In NeurIPS workshop on tackling climate change with machine learning.

4.5 旅行 Travel

问答与搜索 QA & SearchWanderChat [142]Sonia Meyer, Shreya Singh, Bertha Tam, Christopher Ton, and Angel Ren. 2024. A Comparison of LLM Finetuning Methods & Evaluation Metrics with Travel Chatbot Use Case. arXiv:2408.03562 [cs.CL] https://arxiv.org/abs/2408. 03562
QUERT [238]Jian Xie, Yidan Liang, Jingping Liu, Yanghua Xiao, Baohua Wu,andShenghuaNi.2023. QUERT:ContinualPre-training of Language Model for Query Understanding in Travel Domain Search. In SIGKDD. 5282–5291.
行程规划TravelPlanner [239]Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024. TravelPlanner: A Benchmark for Real-World Planning with Language Agents. In ICML (Proceedings of Machine Learning Research, Vol. 235). PMLR, 54590–54613.
ITINERA [193]Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Zhaofeng Wu, Dingyi Zhuang, Jushi Kai, Kebing Hou, Xiaotong Guo, Jinhua Zhao, Zhan Zhao, and Wei Ma. 2024. ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning. arXiv:2402.07204 [cs.AI] https://arxiv.org/abs/2402.07204

 4.6 城市规划 Urban Planning

城市规划 QASingapore Human-Annotated Dataset [80]Yue Jiang, Qin Chao, Yile Chen, Xiucheng Li, Shuai Liu, and Gao Cong. 2024. UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models. In Findings of EMNLP. 1810–1825. https://aclanthology.org/ 2024.findings-emnlp.98
参与式城市规划Urban-planning-annotation [292]He Zhu, Wenjia Zhang, Nuoxian Huang, Boyang Li, Luyao Niu, Zipei Fan, Tianle Lun, Yicheng Tao, Junyou Su, Zhaoya Gong, et al. 2024. PlanGPT: Enhancing urban planning with tailored language model and efficient retrieval. arXiv preprint arXiv:2402.19273 (2024).
DHM, HLG [290]Zhilun Zhou, Yuming Lin, Depeng Jin, and Yong Li. 2024. Large language model for participatory urban planning. arXiv preprint arXiv:2402.17161 (2024).

4.7  能源

电力ETT-X [286]Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In AAAI. 11106–11115.
Electricity [93]Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In SIGIR (SIGIR ’18). 95–104.
太阳能Solar-Energy [93]Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In SIGIR (SIGIR ’18). 95–104.

4.8   地学 Geoscience

真实任务GeoLLM-Engine Benchmark [180]Simranjit Singh, Michael Fore, and Dimitrios Stamoulis. 2024. GeoLLM-Engine: A Realistic Environment for Building Geospatial Copilots. In CVPR. 585–594.
地理定位LLMGeo-Benchmark [218]Zhiqiang Wang, Dejia Xu, Rana Muhammad Shahroz Khan, Yanbin Lin, Zhiwen Fan, and Xingquan Zhu. 2024. LLMGeo: Benchmarking Large Language Models on Image Geolocation In-the-wild. arXiv preprint arXiv:2405.20363 (2024).
GeoSignal [35]Cheng Deng, Tianhang Zhang, Zhongmou He, Qiyuan Chen, Yuanyuan Shi, Yi Xu, Luoyi Fu, Weinan Zhang, Xinbing Wang, Chenghu Zhou, et al. 2024. K2: A foundation language model for geoscience knowledge understanding and utilization. In WSDM. 161–170.
文本与 QABB-GeoSFT/GeoPT [274]Yifan Zhang, Zhiyun Wang, Zhengting He, Jingxuan Li, Gengchen Mai, Jianfeng Lin, Cheng Wei, and Wenhao Yu. 2024. BB-GeoGPT: A framework for learning a large language model for geographic information science. Information Processing & Management 61, 5 (2024), 103808.

 

5 未来展望(Future Prospects)

  • 提升泛化能力
  • 提高可解释性
  • 提升预测效率

相关文章:

  • 基于51单片机的篮球计分器
  • 【第一章:人工智能基础】01.Python基础及常用工具包-(4)Python环境管理
  • REBT 分类任务中,`loss`(损失值)和 `logits`(原始预测分数)是什么
  • 用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
  • SAM2Long本地部署,视频分割处理,绿幕抠像,超长视频支持
  • Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
  • 深度解析云存储:概念、架构与应用实践
  • XMLGregorianCalendar跟Date、localDateTime以及String有什么区别
  • VisualXML全新升级 | 新增数据库编辑功能
  • 【深度学习新浪潮】大模型中,active parameters和total parameters都是什么?
  • rnn判断string中第一次出现a的下标
  • Unity-ECS详解
  • Ubuntu里面单独编译某一个模块
  • DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model
  • FreeRTOS学习02_任务管理
  • [论文阅读]人工智能 | CoMemo:给大视觉语言模型装个“图像记忆”
  • 一种使用 PowerToys 的键盘管理器工具重新映射按键实现在 Windows 上快捷输入字符的方式
  • 在Spring Boot中集成RabbitMQ的完整指南
  • iview组件库:使用Menu组件时手风琴属性accordion失效的解决方案
  • C#模式匹配深度解析与最佳实践
  • 常州平台网站建设/seo优化搜索推广
  • 动画设计工资/长沙谷歌优化
  • 个人做分类信息网站/360安全浏览器
  • 邮箱wordpress/临沂seo建站
  • 公司做网站要注意什么/宁波网络营销怎么做
  • 新闻网站建设汇报/百度指数功能模块有哪些