多元隐函数 偏导公式
我们来推导隐函数 z = z ( x , y ) z = z(x, y) z=z(x,y) 的偏导公式,给定一个隐函数关系:
F ( x , y , z ( x , y ) ) = 0 F(x, y, z(x, y)) = 0 F(x,y,z(x,y))=0
🧠 目标:
求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 ∂ z ∂ y \frac{\partial z}{\partial y} ∂y∂z 的表达式,并给出机器推理式的逐步证明过程(即逻辑、清晰、一步一步链式推导)。
📘 前提:隐函数存在
根据隐函数存在定理,若 F F F 在某点处连续可微,且 ∂ F ∂ z ≠ 0 \frac{\partial F}{\partial z} \ne 0 ∂z∂F=0,则可以在该点附近将 z z z 表示为 x , y x, y x,y 的函数,即:
z = z ( x , y ) z = z(x, y) z=z(x,y)
🚀 推导步骤:链式法则
从恒等关系出发:
F ( x , y , z ( x , y ) ) = 0 F(x, y, z(x,y)) = 0 F(x,y,z(x,y))=0
对两边对 x x x 求偏导数(注意 z = z ( x , y ) z = z(x,y) z=z(x,y),是 x x x 的函数):
∂ ∂ x F ( x , y , z ( x , y ) ) = 0 \frac{\partial}{\partial x} F(x, y, z(x,y)) = 0 ∂x∂F(x,y,z(x,y))=0
使用链式法则对复合函数求导:
∂ F ∂ x + ∂ F ∂ z ⋅ ∂ z ∂ x = 0 \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0 ∂x∂F+∂z∂F⋅∂x∂z=0
移项得到:
∂ z ∂ x = − ∂ F ∂ x ∂ F ∂ z \frac{\partial z}{\partial x} = - \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} ∂x∂z=−∂z∂F∂x∂F
同理,对 y y y 求偏导:
∂ ∂ y F ( x , y , z ( x , y ) ) = 0 \frac{\partial}{\partial y} F(x, y, z(x,y)) = 0 ∂y∂F(x,y,z(x,y))=0
应用链式法则:
∂ F ∂ y + ∂ F ∂ z ⋅ ∂ z ∂ y = 0 \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} = 0 ∂y∂F+∂z∂F⋅∂y∂z=0
移项得到:
∂ z ∂ y = − ∂ F ∂ y ∂ F ∂ z \frac{\partial z}{\partial y} = - \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} ∂y∂z=−∂z∂F∂y∂F
✅ 结论:隐函数 z = z ( x , y ) z = z(x, y) z=z(x,y) 的偏导数为:
∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \boxed{ \frac{\partial z}{\partial x} = - \frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = - \frac{F_y}{F_z} } ∂x∂z=−FzFx,∂y∂z=−FzFy
其中 F x = ∂ F ∂ x F_x = \frac{\partial F}{\partial x} Fx=∂x∂F、 F y = ∂ F ∂ y F_y = \frac{\partial F}{\partial y} Fy=∂y∂F、 F z = ∂ F ∂ z F_z = \frac{\partial F}{\partial z} Fz=∂z∂F。
📌 示例验证
令:
F ( x , y , z ) = x 2 + y 2 + z 2 − 1 = 0 ⇒ z = z ( x , y ) F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0 \Rightarrow z = z(x, y) F(x,y,z)=x2+y2+z2−1=0⇒z=z(x,y)
计算:
F x = 2 x , F y = 2 y , F z = 2 z F_x = 2x, \quad F_y = 2y, \quad F_z = 2z Fx=2x,Fy=2y,Fz=2z
代入公式:
∂ z ∂ x = − 2 x 2 z = − x z , ∂ z ∂ y = − 2 y 2 z = − y z \frac{\partial z}{\partial x} = - \frac{2x}{2z} = -\frac{x}{z}, \quad \frac{\partial z}{\partial y} = - \frac{2y}{2z} = -\frac{y}{z} ∂x∂z=−2z2x=−zx,∂y∂z=−2z2y=−zy
是否还需要用向量形式或全微分方式再次推导这个过程?我可以继续补充。