打卡第39天:Dataset 和 Dataloader类
知识点回顾:
1.Dataset类的__getitem__和__len__方法(本质是python的特殊方法)
2.Dataloader类
3.minist手写数据集的了解
作业:了解下cifar数据集,尝试获取其中一张图片
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np# 设置随机种子,确保结果可复现
torch.manual_seed(42)
# PyTorch 预处理示例
transform = transforms.Compose([transforms.ToTensor(), # 转换为 [0, 1] 的 Tensor(C×H×W)transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2471, 0.2435, 0.2616])
])
#加载数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)
import matplotlib.pyplot as pltdef visualize_sample(dataset):sample_idx = torch.randint(0, len(train_dataset), size=(1,)).item() # 随机选择一张图片的索引image, label = train_dataset[sample_idx] # 获取图片和标签
#反归一化处理显示img = image.permute(1, 2, 0).numpy()img = img * np.array([0.2471, 0.2435, 0.2616]) + np.array([0.4914, 0.4822, 0.4465])img = np.clip(img, 0, 1)plt.figure(figsize=(3, 3))plt.imshow(img)plt.title(f"Label: {train_dataset.classes[label]}")plt.axis('off')plt.show()
代码是对的,图片还没出来我再找找问题
@浙大疏锦行