当前位置: 首页 > news >正文

python打卡第48天

知识点回顾:

  1. 随机张量的生成:torch.randn函数
  2. 卷积和池化的计算公式(可以不掌握,会自动计算的)
  3. pytorch的广播机制:加法和乘法的广播机制

ps:numpy运算也有类似的广播机制,基本一致

  • **torch.randn**:快速生成随机张量,适用于初始化和数据增强。
  • 卷积与池化:通过滑动窗口提取局部特征,公式决定输出尺寸。
  • 广播机制:自动扩展维度,简化代码逻辑,提升计算效率。

    1. ​随机张量的生成:torch.randn 函数

    torch.randn 是 PyTorch 中用于生成服从标准正态分布(均值为 0,标准差为 1)的随机数的函数。其核心参数是张量的形状(*size),其他参数如数据类型、设备(CPU/GPU)等为可选配置。

    关键特性:
  • 形状参数:通过 *size 指定张量维度,例如 torch.randn(3, 4) 生成一个 3x4 的张量。
  • 可选参数
    • dtype:数据类型(默认 float32)。
    • device:指定设备(如 cuda:0 表示 GPU)。
    • requires_grad:是否跟踪梯度(默认 False)。
  • 应用场景:初始化神经网络权重、生成随机噪声等。
  • import torch# 生成 2x3 的标准正态分布张量
    tensor = torch.randn(2, 3)
    print(tensor)# 生成均值为 2、标准差为 0.5 的正态分布张量
    custom_tensor = torch.randn(2, 2, mean=2, std=0.5)
    print(custom_tensor)

    2. ​卷积和池化的计算公式

    卷积和池化是深度学习中常用的特征提取操作,其核心是滑动窗口内的数学运算。

    卷积计算公式​(以一维为例):

    离散卷积公式:
    (f∗g)(n)=∑if(i)⋅g(n−i)(f * g)(n) = \sum_{i} f(i) \cdot g(n-i)(f∗g)(n)=∑i​f(i)⋅g(n−i)

  • 输入信号:长度为 MMM 的序列 xxx。
  • 卷积核:长度为 NNN 的滤波器 hhh。
  • 输出长度:M+N−1M + N - 1M+N−1(无填充且步长为 1)。
  • PyTorch 中的卷积参数

  • kernel_size:卷积核大小。
  • stride:滑动步长。
  • padding:填充大小。
  • dilation:卷积核元素间距。
  • 池化计算公式

    池化操作通过降维减少计算量,常用最大池化(Max Pooling)和平均池化(Average Pooling)。

  • 输出尺寸
    Oheight=⌊Hin+2P−KS+1⌋O_{height} = \left\lfloor \frac{H_{in} + 2P - K}{S} + 1 \right\rfloorOheight​=⌊SHin​+2P−K​+1⌋
    Owidth=⌊Win+2P−KS+1⌋O_{width} = \left\lfloor \frac{W_{in} + 2P - K}{S} + 1 \right\rfloorOwidth​=⌊SWin​+2P−K​+1⌋
    • Hin/WinH_{in}/W_{in}Hin​/Win​:输入高度/宽度。
    • K:池化核大小。
    • S:步长。
    • P:填充大小。
  • 示例:

    输入特征图尺寸为 28×2828 \times 2828×28,使用 2×22 \times 22×2 的最大池化(步长 2,无填充),输出尺寸为 14×1414 \times 1414×14。

  • 3. ​PyTorch 的广播机制

    广播机制允许不同形状的张量进行逐元素运算(如加法、乘法),无需显式扩展内存。

    广播规则
  • 维度对齐:从右向左逐一对齐维度,若维度大小相等或其中一个为 1,则兼容。
  • 扩展维度:若张量缺少某维度,则在左侧补 1。
  • 扩展大小为 1 的维度:将大小为 1 的维度扩展为另一张量的对应维度大小。
  • a = torch.tensor([[1, 2, 3], [4, 5, 6]])  # 形状 (2, 3)
    b = torch.tensor([10, 20, 30])            # 形状 (3,)# 广播后 b 的形状变为 (2, 3)
    result = a + b
    print(result)
    # 输出:
    # tensor([[11, 22, 33],
    #         [14, 25, 36]])

相关文章:

  • 板凳-------Mysql cookbook学习 (十--2)
  • 深入浅出 Arrays.sort(DualPivotQuicksort):如何结合快排、归并、堆排序和插入排序
  • MySQL中的部分问题(2)
  • java 乐观锁的实现和注意细节
  • Linux系统的CentOS7发行版安装MySQL80
  • 【笔记】结合 Conda任意创建和配置不同 Python 版本的双轨隔离的 Poetry 虚拟环境
  • 2025HNCTF - Crypto
  • 模块缝合-把A模块换成B模块(没写完)
  • 从零开始学Flink:揭开实时计算的神秘面纱
  • Spring Boot + Flink + FlinkCDC 实现 MySQL 同步到 MySQL
  • 浏览器兼容-polyfill-本地服务-优化
  • 解决transformers.adapters import AdapterConfig 报错的问题
  • Flink CDC 中 StartupOptions 模式详解
  • Flink CDC —部署模式
  • 分布式锁实战:Redisson vs. Redis 原生指令的性能对比
  • UDP 与 TCP 的区别是什么?
  • Cilium动手实验室: 精通之旅---12.Cilium Egress Gateway - Lab
  • Linux Docker的简介
  • 基于Python学习《Head First设计模式》第九章 迭代器和组合模式
  • K8S认证|CKS题库+答案| 7. Dockerfile 检测
  • 网站后台看不到部分内容/正规百度推广
  • 学校html网站模板/如何网络推广新产品
  • 网站建设企业实践日志/岳阳seo公司
  • 做网站业务员提成几个点/百度售后客服电话24小时
  • 网站开发出来为什么加载特别慢/公司网页制作模板
  • 医院网站建设的指导思想/seo技术蜘蛛屯