当前位置: 首页 > news >正文

day 46

注意力

 

注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。

transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。

通道注意力

想要把通道注意力插入到模型中,关键步骤如下:

1. 定义注意力模块

# ===================== 新增:通道注意力模块(SE模块) =====================
class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_ratio=16):"""参数:in_channels: 输入特征图的通道数reduction_ratio: 降维比例,用于减少参数量"""super(ChannelAttention, self).__init__()# 全局平均池化 - 将空间维度压缩为1x1,保留通道信息self.avg_pool = nn.AdaptiveAvgPool2d(1)# 全连接层 + 激活函数,用于学习通道间的依赖关系self.fc = nn.Sequential(# 降维:压缩通道数,减少计算量nn.Linear(in_channels, in_channels // reduction_ratio, bias=False),nn.ReLU(inplace=True),# 升维:恢复原始通道数nn.Linear(in_channels // reduction_ratio, in_channels, bias=False),# Sigmoid将输出值归一化到[0,1],表示通道重要性权重nn.Sigmoid())def forward(self, x):"""参数:x: 输入特征图,形状为 [batch_size, channels, height, width]返回:加权后的特征图,形状不变"""batch_size, channels, height, width = x.size()# 1. 全局平均池化:[batch_size, channels, height, width] → [batch_size, channels, 1, 1]avg_pool_output = self.avg_pool(x)# 2. 展平为一维向量:[batch_size, channels, 1, 1] → [batch_size, channels]avg_pool_output = avg_pool_output.view(batch_size, channels)# 3. 通过全连接层学习通道权重:[batch_size, channels] → [batch_size, channels]channel_weights = self.fc(avg_pool_output)# 4. 重塑为二维张量:[batch_size, channels] → [batch_size, channels, 1, 1]channel_weights = channel_weights.view(batch_size, channels, 1, 1)# 5. 将权重应用到原始特征图上(逐通道相乘)return x * channel_weights  # 输出形状:[batch_size, channels, height, width]

2. 重写之前的模型定义部分,确定好模块插入的位置

class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # ---------------------- 第一个卷积块 ----------------------self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.bn1 = nn.BatchNorm2d(32)self.relu1 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca1 = ChannelAttention(in_channels=32, reduction_ratio=16)  self.pool1 = nn.MaxPool2d(2, 2)  # ---------------------- 第二个卷积块 ----------------------self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.bn2 = nn.BatchNorm2d(64)self.relu2 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca2 = ChannelAttention(in_channels=64, reduction_ratio=16)  self.pool2 = nn.MaxPool2d(2)  # ---------------------- 第三个卷积块 ----------------------self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.bn3 = nn.BatchNorm2d(128)self.relu3 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca3 = ChannelAttention(in_channels=128, reduction_ratio=16)  self.pool3 = nn.MaxPool2d(2)  # ---------------------- 全连接层(分类器) ----------------------self.fc1 = nn.Linear(128 * 4 * 4, 512)self.dropout = nn.Dropout(p=0.5)self.fc2 = nn.Linear(512, 10)def forward(self, x):# ---------- 卷积块1处理 ----------x = self.conv1(x)       x = self.bn1(x)         x = self.relu1(x)       x = self.ca1(x)  # 应用通道注意力x = self.pool1(x)       # ---------- 卷积块2处理 ----------x = self.conv2(x)       x = self.bn2(x)         x = self.relu2(x)       x = self.ca2(x)  # 应用通道注意力x = self.pool2(x)       # ---------- 卷积块3处理 ----------x = self.conv3(x)       x = self.bn3(x)         x = self.relu3(x)       x = self.ca3(x)  # 应用通道注意力x = self.pool3(x)       # ---------- 展平与全连接层 ----------x = x.view(-1, 128 * 4 * 4)  x = self.fc1(x)           x = self.relu3(x)         x = self.dropout(x)       x = self.fc2(x)           return x  # 重新初始化模型,包含通道注意力模块
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)

简单来说就是通过对输入的特征图进行加权,从而增强重要通道的特征响应,抑制不重要通道的响应。

@浙大疏锦行

相关文章:

  • Rust 开发环境搭建
  • 解决cocos 2dx/creator2.4在ios18下openURL无法调用的问题
  • 配置git命令缩写
  • Git 常用命令大全
  • 行业案例 | ASOS 借助 Azure AI Foundry(国际版)为年轻时尚爱好者打造惊喜体验
  • vue-video-player视频保活成功确无法推送问题
  • JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
  • React 基础入门笔记
  • Kerberos面试内容整理-开源 Kerberos 实现(MIT Kerberos、Heimdal 等)
  • 20250606-C#知识:泛型与非泛型容器的基本操作
  • 32单片机——基本定时器
  • 机器学习KNN算法全解析:从原理到实战
  • python 爬虫工具 mitmproxy, 几问几答,记录一下
  • Electron Fiddle使用笔记
  • React从基础入门到高级实战:React 实战项目 - 项目三:实时聊天应用
  • windows10搭建nfs服务器
  • 大数据学习(131)-Hive数据分析函数总结
  • 赋能大型语言模型与外部世界交互——函数调用的崛起
  • Spring Boot + Prometheus 实现应用监控(基于 Actuator 和 Micrometer)
  • Axios请求超时重发机制
  • 宁波建设网上银行/seow
  • 自己怎么做网站赚钱/淘宝关键词top排行榜
  • 北京市公共资源交易服务平台/seo引擎搜索网站
  • 画册欣赏网站/徐州seo外包
  • 专业定制网站建设代理/深圳十大教育培训机构排名
  • 网站建设公司一般几个人/whois域名查询