当前位置: 首页 > news >正文

从0开始学习R语言--Day18--分类变量关联性检验

在平时的分析中,关于分类的问题不仅仅会出现在如何将数据分类,还会体现在要如何去挖掘不同分类指甲呢关系,今天我们来学习分类变量关联性检验的相关方法。

卡方检验

通过观察时间中数据的分布来判断原假设是否成立。假设我们是在判断性别和是否吸烟这两个类别的关系,那么我们可以通过调查吸烟的人群中男性和女性的比例,如果两者无关,那么男性和女性的比例应该会差不多,反之则推翻原假设。

Fisher精确检验

就像它的名字一样,当数据量比较小时,我们可以直接去计算事件发生的概率,就像上面那个吸烟的例子一样,假设样本数量只有10,那么我们可以轻松地通过计算知道性别是否和吸烟有关系。

Cramer's V

这个方法,目的是为了在知道是否有关联的前提下,告诉我们这个关联的程度有多高,0代表无关联,0.1-0.3代表弱关联,0.3-0.5代表中等,0.5以上代表强关联。

以下是一个例子:

# 生成两个分类变量的关联数据(性别 vs 吸烟)
set.seed(123)
n <- 200  # 样本量# 创建有轻度关联的数据
data <- data.frame(gender = sample(c("Male", "Female"), size = n, replace = TRUE, prob = c(0.5, 0.5)),smoke = ifelse(runif(n) > 0.6, "Yes", "No")  # 吸烟比例40%
)# 人为制造关联:男性更可能吸烟
data$smoke[data$gender == "Male"] <- ifelse(runif(sum(data$gender == "Male")) > 0.7, "Yes", "No"  # 男性吸烟比例30%
)# 查看列联表
table(data$gender, data$smoke)chi_test <- chisq.test(data$gender, data$smoke)
print(chi_test)# 输出解读:
# p-value < 0.05 表示显著关联
# Pearson's Chi-squared statistic 是卡方值fisher_test <- fisher.test(data$gender, data$smoke)
print(fisher_test)# 输出解读:
# p-value 和卡方检验类似,但更适合小样本
install.packages("rcompanion",type = "binary")
library(rcompanion)# 计算Cramer's V
cramer_v <- cramerV(data$gender, data$smoke)
print(cramer_v)# 输出示例:
# Cramer V 
# 0.14
# 解释:0.1~0.3表示弱关联library(ggplot2)ggplot(data, aes(x = gender, fill = smoke)) +geom_bar(position = "dodge") +labs(title = "Gender vs Smoking", x = "Gender", y = "Count")

输出:

         No YesFemale 60  43Male   70  27Pearson's Chi-squared test with Yates' continuity correctiondata:  data$gender and data$smoke
X-squared = 3.6607, df = 1, p-value = 0.05571Fisher's Exact Test for Count Datadata:  data$gender and data$smoke
p-value = 0.05349
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:0.2843199 1.0126390
sample estimates:
odds ratio 0.5398822
Cramer V 0.1458

从结果来看,卡方统计量X-squared为3.6607,说明观测值和期望值之间的差异较小;而p大于0.05说明在显著水平下,不能拒绝原假设,即性别和吸烟没有显著联系,但p值在边缘,只比0.05大了一点点,还要仔细验证。fisher检验的p同样大于0.05,只不过它还带来了另一个信息,odds ratio的值为0.5398822,表明男性吸烟的比例比女性低。而Cramer V = 0.1458进一步则进一步说明了吸烟与性别的关联非常弱,三者一起计算,更加确定了这两者无关联的结果的真实性。

相关文章:

  • Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践
  • EM储能网关ZWS智慧储能云应用(11) — 一级架构主从架构
  • 关于事务的简介
  • 人机融合智能 | “人智交互”跨学科新领域
  • 高通camx CaptureSession
  • 使用 SymPy 进行向量和矩阵的高级操作
  • 电子电气架构 --- 什么是功能架构?
  • Docker容器化技术概述与实践
  • Chrome书签的导出与导入:步骤图
  • 掌握子网划分:优化IP分配与管理
  • Ubuntu 系统静态网络配置
  • 从webrtc到janus简介
  • 用Cursor与Chrome插件爬取网页数据
  • windows上的visual studio2022的项目使用jenkins自动打包
  • 使用 Docker Compose 部署 Jenkins(LTS 版)持续集成环境
  • 基于深度强化学习的Scrapy-Redis分布式爬虫动态调度策略研究
  • 常用枚举技巧:基础(一)
  • Go 并发编程基础:通道(Channel)的使用
  • 在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
  • Go 中的 Map 与字符处理指南
  • 欧美设计网站推荐/百度推广手机版
  • 专业微信网站建设多少钱/长春百度seo排名
  • 钟楼做网站/seo规则
  • 企业在线/seo排名赚钱
  • 专业企业网站建设哪家服务好/seo 优化一般包括哪些内容
  • 国内哪个网站用wordpress/百度智能小程序怎么优化排名