Python实现HPSO-TVAC优化算法优化支持向量机SVC分类模型项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档),如需数据+代码+文档可以直接到文章最后关注获取。
1.项目背景
在当今数据驱动的时代,支持向量机(SVM)作为一种经典的机器学习算法,在分类任务中表现出色,尤其是在高维数据和小样本场景下具有显著优势。然而,SVM的性能高度依赖于超参数的选择,例如正则化参数C 和 gamma 。不合理的超参数配置可能导致模型欠拟合或过拟合,从而降低分类精度。因此,如何高效地优化SVM的超参数成为提升模型性能的关键问题。传统的网格搜索和随机搜索方法虽然简单易用,但在面对高维复杂参数空间时效率较低,难以满足实际需求。
近年来,群体智能优化算法因其全局搜索能力和高效的优化性能而备受关注。其中,粒子群优化(PSO)是一种基于群体行为的启发式优化算法,广泛应用于解决连续优化问题。然而,传统PSO算法在处理复杂优化问题时容易陷入局部最优解,且收敛速度较慢。为此,研究者提出了多种改进版本,如分层粒子群优化(HPSO)和时间变化加速系数(TVAC)相结合的 HPSO-TVAC 算法。通过动态调整加速系数和引入分层搜索策略,HPSO-TVAC 显著提升了传统PSO的全局搜索能力和收敛速度,使其非常适合应用于SVM超参数优化这一复杂问题。
本项目旨在结合HPSO-TVAC算法与支持向量机(SVC)分类模型,构建一个自动化超参数优化框架,并通过实际数据集进行验证和实战应用。具体而言,我们将利用HPSO-TVAC的全局搜索能力,快速找到SVM的最佳超参数配置,从而提高分类模型的预测精度和泛化能力。通过该项目的实施,我们希望为相关领域的研究者和实践者提供一种高效、可靠的解决方案,同时展示HPSO-TVAC在解决复杂优化问题中的潜力,助力实际分类任务的性能提升。
本项目通过Python实现HPSO-TVAC优化算法优化支持向量机SVC分类模型项目实战。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3.3数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量柱状图
用Matplotlib工具的plot()方法绘制柱状图:
4.2 y=1样本x1变量分布直方图
用Matplotlib工具的hist()方法绘制直方图:
4.3 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:
6.构建HPSO-TVAC优化算法优化支持向量机SVC分类模型
主要通过Python实现HPSO-TVAC优化算法优化支持向量机SVC分类模型算法,用于目标分类。
6.1 寻找最优参数值
最优参数值:
6.2 最优参数构建模型
这里通过最优参数构建分类模型。
模型名称 | 模型参数 |
SVM分类模型 | C=best_C |
gamma=best_gamma | |
tol=best_tol |
7.模型评估
7.1评估指标及结果
评估指标主要包括准确率、查准率、查全率、F1分值等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
SVM分类模型 | 准确率 | 0.9850 |
查准率 | 0.9848 | |
查全率 | 0.9848 | |
F1分值 | 0.9848 |
从上表可以看出,F1分值为0.9848,说明HPSO-TVAC优化算法优化的SVM模型效果较好。
关键代码如下:
7.2 分类报告
从上图可以看出,分类为0的F1分值为0.99;分类为1的F1分值为0.98。
7.3 混淆矩阵
从上图可以看出,实际为0预测不为0的 有3个样本,实际为1预测不为1的 有3个样本,模型效果良好。
8.结论与展望
综上所述,本文采用了通过HPSO-TVAC优化算法优化SVM分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果较好。此模型可用于日常产品的建模工作。