当前位置: 首页 > news >正文

python打卡第41天

知识回顾

  1. 数据增强
  2. 卷积神经网络定义的写法
  3. batch归一化:调整一个批次的分布,常用与图像数据
  4. 特征图:只有卷积操作输出的才叫特征图
  5. 调度器:直接修改基础学习率

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

  1. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

首先回顾下昨天的代码。

# import torch
# import torch.nn as nn
# import torch.optim as optim
# from torchvision import datasets, transforms
# from torch.utils.data import DataLoader
# import matplotlib.pyplot as plt
# import numpy as np# # 设置中文字体支持
# plt.rcParams["font.family"] = ["SimHei"]
# plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# # 1. 数据预处理
# transform = transforms.Compose([
#     transforms.ToTensor(),                # 转换为张量
#     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
# ])# # 2. 加载CIFAR-10数据集
# train_dataset = datasets.CIFAR10(
#     root='./data',
#     train=True,
#     download=True,
#     transform=transform
# )# test_dataset = datasets.CIFAR10(
#     root='./data',
#     train=False,
#     transform=transform
# )# # 3. 创建数据加载器
# batch_size = 64
# train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# # 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
# class MLP(nn.Module):
#     def __init__(self):
#         super(MLP, self).__init__()
#         self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量
#         self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元
#         self.relu1 = nn.ReLU()
#         self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合
#         self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元
#         self.relu2 = nn.ReLU()
#         self.dropout2 = nn.Dropout(0.2)
#         self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别#     def forward(self, x):
#         # 第一步:将输入图像展平为一维向量
#         x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]#         # 第一层全连接 + 激活 + Dropout
#         x = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]
#         x = self.relu1(x)    # 应用ReLU激活函数
#         x = self.dropout1(x) # 训练时随机丢弃部分神经元输出#         # 第二层全连接 + 激活 + Dropout
#         x = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]
#         x = self.relu2(x)    # 应用ReLU激活函数
#         x = self.dropout2(x) # 训练时随机丢弃部分神经元输出#         # 第三层(输出层)全连接
#         x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]#         return x  # 返回未经过Softmax的logits# # 检查GPU是否可用
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# # 初始化模型
# model = MLP()
# model = model.to(device)  # 将模型移至GPU(如果可用)# criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
# optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# # 5. 训练模型(记录每个 iteration 的损失)
# def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):
#     model.train()  # 设置为训练模式#     # 记录每个 iteration 的损失
#     all_iter_losses = []  # 存储所有 batch 的损失
#     iter_indices = []     # 存储 iteration 序号#     for epoch in range(epochs):
#         running_loss = 0.0
#         correct = 0
#         total = 0#         for batch_idx, (data, target) in enumerate(train_loader):
#             data, target = data.to(device), target.to(device)  # 移至GPU#             optimizer.zero_grad()  # 梯度清零
#             output = model(data)  # 前向传播
#             loss = criterion(output, target)  # 计算损失
#             loss.backward()  # 反向传播
#             optimizer.step()  # 更新参数#             # 记录当前 iteration 的损失
#             iter_loss = loss.item()
#             all_iter_losses.append(iter_loss)
#             iter_indices.append(epoch * len(train_loader) + batch_idx + 1)#             # 统计准确率和损失
#             running_loss += iter_loss
#             _, predicted = output.max(1)
#             total += target.size(0)
#             correct += predicted.eq(target).sum().item()#             # 每100个批次打印一次训练信息
#             if (batch_idx + 1) % 100 == 0:
#                 print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
#                       f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')#         # 计算当前epoch的平均训练损失和准确率
#         epoch_train_loss = running_loss / len(train_loader)
#         epoch_train_acc = 100. * correct / total#         # 测试阶段
#         model.eval()  # 设置为评估模式
#         test_loss = 0
#         correct_test = 0
#         total_test = 0#         with torch.no_grad():
#             for data, target in test_loader:
#                 data, target = data.to(device), target.to(device)
#                 output = model(data)
#                 test_loss += criterion(output, target).item()
#                 _, predicted = output.max(1)
#                 total_test += target.size(0)
#                 correct_test += predicted.eq(target).sum().item()#         epoch_test_loss = test_loss / len(test_loader)
#         epoch_test_acc = 100. * correct_test / total_test#         print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')#     # 绘制所有 iteration 的损失曲线
#     plot_iter_losses(all_iter_losses, iter_indices)#     return epoch_test_acc  # 返回最终测试准确率# # 6. 绘制每个 iteration 的损失曲线
# def plot_iter_losses(losses, indices):
#     plt.figure(figsize=(10, 4))
#     plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
#     plt.xlabel('Iteration(Batch序号)')
#     plt.ylabel('损失值')
#     plt.title('每个 Iteration 的训练损失')
#     plt.legend()
#     plt.grid(True)
#     plt.tight_layout()
#     plt.show()# # 7. 执行训练和测试
# epochs = 20  # 增加训练轮次以获得更好效果
# print("开始训练模型...")
# final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
# print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # # 保存模型
# # torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # # print("模型已保存为: cifar10_mlp_model.pth")

一、数据增强

在图像数据预处理环节,为提升数据多样性,可采用数据增强(数据增广)策略。该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。

常见的修改策略包括以下几类

1. 几何变换:如旋转、缩放、平移、剪裁、裁剪、翻转

2. 像素变换:如修改颜色、亮度、对比度、饱和度、色相、高斯模糊(模拟对焦失败)、增加噪声、马赛克

3. 语义增强(暂时不用):mixup,对图像进行结构性改造、cutout随机遮挡等

此外,在数据极少的场景长,常常用生成模型来扩充数据集,如GAN、VAE等。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

二、 CNN模型

卷积的本质:通过卷积核在输入通道上的滑动乘积,提取跨通道的空间特征。所以只需要定义几个参数即可

1. 卷积核大小:卷积核的大小,如3x3、5x5、7x7等。

2. 输入通道数:输入图片的通道数,如1(单通道图片)、3(RGB图片)、4(RGBA图片)等。

3. 输出通道数:卷积核的个数,即输出的通道数。如本模型中通过 32→64→128 逐步增加特征复杂度

4. 步长(stride):卷积核的滑动步长,默认为1。

# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)

上述定义CNN模型中:

1. 使用三层卷积+池化结构提取图像特征

2. 每层卷积后添加BatchNorm加速训练并提高稳定性

3. 使用Dropout减少过拟合

可以把全连接层前面的不理解为神经网络的一部分,单纯理解为特征提取器,他们的存在就是帮助模型进行特征提取的。

2.1 batch归一化

Batch 归一化是深度学习中常用的一种归一化技术,加速模型收敛并提升泛化能力。通常位于卷积层后。

卷积操作常见流程如下:

1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层

2. Flatten -> Dense (with Dropout,可选) -> Dense (Output)

其中,BatchNorm 应在池化前对空间维度的特征完成归一化,以确保归一化统计量基于足够多的样本(空间位置),避免池化导致的统计量偏差

旨在解决深度神经网络训练中的内部协变量偏移问题:深层网络中,随着前层参数更新,后层输入分布会发生变化,导致模型需要不断适应新分布,训练难度增加。就好比你在学新知识,知识体系的基础一直在变,你就得不断重新适应,模型训练也是如此,这就导致训练变得困难,这就是内部协变量偏移问题。

通过对每个批次的输入数据进行标准化(均值为 0、方差为 1),想象把一堆杂乱无章、分布不同的数据规整到一个标准的样子。

1. 使各层输入分布稳定,让数据处于激活函数比较合适的区域,缓解梯度消失 / 爆炸问题;

2. 因为数据分布稳定了,所以允许使用更大的学习率,提升训练效率。

| **阶段**       | **均值/方差来源**          | **参数更新**               |  

|----------------|---------------------------|---------------------------|  

| **训练阶段**   | 基于当前批次数据计算       | 实时更新 $gamma$、$beta$ |  

| **推理阶段**   | 使用训练集的**全局统计量**(如滑动平均后的均值和方差) | 不更新参数,直接使用固定值 |


 

深度学习的归一化有2类:

1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。

2. Layer Normalization:一般用于文本数据,本数据的序列长度往往不同,像不同句子长短不一,很难像图像那样固定 Batch Size 。如果用 Batch 归一化,不同批次的统计量波动大,效果不好。层归一化是对单个样本的所有隐藏单元进行归一化,不依赖批次。

ps:这个操作在结构化数据中其实是叫做标准化,但是在深度学习领域,习惯把这类对网络中间层数据进行调整分布的操作都叫做归一化 。

2.2 特征图

卷积层输出的叫做特征图,通过输入尺寸和卷积核的尺寸、步长可以计算出输出尺寸。可以通过可视化中间层的特征图,理解 CNN 如何从底层特征(如边缘)逐步提取高层语义特征(如物体部件、整体结构)。MLP是不输出特征图的,因为他输出的一维向量,无法保留空间维度

特征图就代表着在之前特征提取器上提取到的特征,可以通过 Grad-CAM方法来查看模型在识别图像时,特征图所对应的权重是多少。-----深度学习可解释性

我们在后续介绍。下面接着训练CNN模型

2.3 调度器

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)  
# # 每5个epoch,LR = LR × 0.1  # scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 20, 30], gamma=0.5)  
# # 当epoch=10、20、30时,LR = LR × 0.5  # scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)  
# # LR在[0.0001, LR_initial]之间按余弦曲线变化,周期为2×T_max  
5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

相关文章:

  • RESTful API原理,以及如何使用它构建 web 应用程序
  • 配置前端控制器
  • 帕金森带来的生活困境
  • proteus新建工程
  • Rust 配置解析`serde` + `toml`
  • 【计算机网络】子网划分
  • Go语言的原子操作
  • 微信小程序真机调试时如何实现与本地开发环境服务器交互
  • 如何评估CAN总线信号质量
  • 基于空天地一体化网络的通信系统matlab性能分析
  • Matlab程序设计基础
  • simulink mask、sfunction和tlc的联动、接口
  • Java 文件操作 和 IO(5)-- 综合案例练习 -- 示例一
  • 复数三角不等式简介及 MATLAB 演示
  • 嵌入式(C语言篇)Day13
  • 华为计试——刷题
  • LeetCode 1524. 和为奇数的子数组数目
  • 38.springboot使用rabbitmq
  • 【AUTOSAR OS】计数器Counter机制解析:定义、实现与应用
  • 注销微软账户
  • 哪个网站帮忙做户型方案/手机怎么建自己的网站
  • 做网站制作要多少费用/关键词竞价排名是什么意思
  • 一个人做网站赚钱/搜索优化seo
  • 网络营销与策划形考任务四答案/如何网站优化排名
  • 承德网站建设费用/简述seo
  • 上海跨境电商网站开发公司排名/口碑营销的作用