DAY01:【ML 第二弹】高等数学
1、导数的定义
f ′ ( x 0 ) = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \quad f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)
或
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \quad f′(x0)=x→x0limx−x0f(x)−f(x0)
2、左/右导数的几何意义和物理意义
函数 f ( x ) f(x) f(x)在 x 0 x_{0} x0处的左、右导数分别定义为:
2.1 左导数
f − ′ ( x 0 ) = lim Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) f'_-(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}, \, (x = x_0 + \Delta x) f−′(x0)=Δx→0−limΔxf(x0+Δx)−f(x0)=x→x0−limx−x0f(x)−f(x0),(x=x0+Δx)
2.2 右导数
f + ′ ( x 0 ) = lim Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} f+′(x0)=Δx→0+limΔxf(x0+Δx)−f(x0)=x→x0+limx−x0f(x)−f(x0)
3、函数的可导性与连续性之间的关系
(1)函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处可微 ⇔ \Leftrightarrow ⇔ f ( x ) f(x) f(x)在 x 0 x_0 x0处可导。
(2)若函数在点 x 0 x_0 x0处可导,则 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_0 x0处连续,反之则不成立,即函数连续不一定可导。
(3) f ′ ( x 0 ) f'(x_0) f′(x0)存在 ⇔ \Leftrightarrow ⇔ f − ′ ( x 0 ) = f + ′ ( x 0 ) f'_-(x_0) = f'_+(x_0) f−′(x0)=f+′(x0)
4、平面曲线的切线和法线
4.1 切线方程
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_0 = f'(x_0)(x - x_0) y−y0=f′(x0)(x−x0)
4.2 法线方程
y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y - y_0 = -\frac{1}{f'(x_0)}(x - x_0), \, f'(x_0) \neq 0 y−y0=−f′(x0)1(x−x0),f′(x0)=0
5、四则运算
设函数 u = u ( x ) u = u(x) u=u(x), v = v ( x ) v = v(x) v=v(x)在点 x x x可导,则:
(1) ( u ± v ) ′ = u ′ ± v ′ (u \pm v)' = u' \pm v' (u±v)′=u′±v′
(2) ( u v ) ′ = u v ′ + v u ′ (uv)' = uv' + vu' (uv)′=uv′+vu′, d ( u v ) = u d v + v d u d(uv) = udv + vdu d(uv)=udv+vdu
(3) ( u v ) ′ = v u ′ − u v ′ v 2 ( v ≠ 0 ) \left( \frac{u}{v} \right)' = \frac{vu' - uv'}{v^2} \, (v \neq 0) (vu)′=v2vu′−uv′(v=0), d ( u v ) = v d u − u d v v 2 d\left( \frac{u}{v} \right) = \frac{vdu - udv}{v^2} d(vu)=v2vdu−udv
6、基本导数与微分表
序号 | 函数 y y y | 导数 y ′ y' y′ | 微分 d y dy dy |
---|---|---|---|
1 | y = c y = c y=c(常数) | 0 0 0 | 0 0 0 |
2 | y = x α y = x^\alpha y=xα( α \alpha α 为实数) | α x α − 1 \alpha x^{\alpha-1} αxα−1 | α x α − 1 d x \alpha x^{\alpha-1} dx αxα−1dx |
3 | y = a x y = a^x y=ax | a x ln a a^x \ln a axlna | a x ln a d x a^x \ln a dx axlnadx |
特例: y = e x y = e^x y=ex | e x e^x ex | e x d x e^x dx exdx | |
4 | y = log a x y = \log_a x y=logax | 1 x ln a \frac{1}{x \ln a} xlna1 | 1 x ln a d x \frac{1}{x \ln a} dx xlna1dx |
特例: y = ln x y = \ln x y=lnx | 1 x \frac{1}{x} x1 | 1 x d x \frac{1}{x} dx x1dx | |
5 | y = sin x y = \sin x y=sinx | cos x \cos x cosx | cos x d x \cos x dx cosxdx |
6 | y = cos x y = \cos x y=cosx | − sin x -\sin x −sinx | − sin x d x -\sin x dx −sinxdx |
7 | y = tan x y = \tan x y=tanx | sec 2 x \sec^2 x sec2x(或 1 cos 2 x \frac{1}{\cos^2 x} cos2x1) | sec 2 x d x \sec^2 x dx sec2xdx |
8 | y = cot x y = \cot x y=cotx | − csc 2 x -\csc^2 x −csc2x(或 − 1 sin 2 x -\frac{1}{\sin^2 x} −sin2x1) | − csc 2 x d x -\csc^2 x dx −csc2xdx |
9 | y = sec x y = \sec x y=secx | sec x tan x \sec x \tan x secxtanx | sec x tan x d x \sec x \tan x dx secxtanxdx |
10 | y = csc x y = \csc x y=cscx | − csc x cot x -\csc x \cot x −cscxcotx | − csc x cot x d x -\csc x \cot x dx −cscxcotxdx |
11 | y = arcsin x y = \arcsin x y=arcsinx | 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1−x21 | 1 1 − x 2 d x \frac{1}{\sqrt{1-x^2}} dx 1−x21dx |
12 | y = arccos x y = \arccos x y=arccosx | − 1 1 − x 2 -\frac{1}{\sqrt{1-x^2}} −1−x21 | − 1 1 − x 2 d x -\frac{1}{\sqrt{1-x^2}} dx −1−x21dx |
13 | y = arctan x y = \arctan x y=arctanx | 1 1 + x 2 \frac{1}{1+x^2} 1+x21 | 1 1 + x 2 d x \frac{1}{1+x^2} dx 1+x21dx |
14 | y = arccot x y = \operatorname{arccot} x y=arccotx | − 1 1 + x 2 -\frac{1}{1+x^2} −1+x21 | − 1 1 + x 2 d x -\frac{1}{1+x^2} dx −1+x21dx |
15 | y = sh x y = \operatorname{sh} x y=shx(双曲正弦) | ch x \operatorname{ch} x chx(双曲余弦) | ch x d x \operatorname{ch} x dx chxdx |
16 | y = ch x y = \operatorname{ch}x y=chx | sh x \operatorname{sh}x shx | sh x d x \operatorname{sh}x \, dx shxdx |
7、复合函数,反函数,隐函数的微分法
7.1 复合函数
若 μ = φ ( x ) \mu = \varphi(x) μ=φ(x)在点 x x x可导,而 y = f ( μ ) y = f(\mu) y=f(μ)在对应点 μ \mu μ( μ = φ ( x ) \mu = \varphi(x) μ=φ(x))可导,则复合函数 y = f ( φ ( x ) ) y = f(\varphi(x)) y=f(φ(x))在点 x x x可导,且:
y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) y' = f'(\mu) \cdot \varphi'(x) y′=f′(μ)⋅φ′(x)
7.2 反函数
设 y = f ( x ) y = f(x) y=f(x)在点 x x x的某邻域内单调连续,在点 x x x处可导且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f′(x)=0,则其反函数在点 x x x所对应的 y y y处可导,且:
d y d x = 1 d x d y \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} dxdy=dydx1
7.3 隐函数导数 d y d x \frac{dy}{dx} dxdy
(1)方程两边对 x x x求导:
y y y是 x x x的函数,则 y y y的函数(如 1 y \frac{1}{y} y1, y 2 y^2 y2, ln y \ln y lny, e y e^y ey 等)是 x x x的复合函数,对 x x x求导需按复合函数连锁法则进行。
(2)公式法:
由 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0知:
d y d x = − F x ′ ( x , y ) F y ′ ( x , y ) \frac{dy}{dx} = -\frac{F'_x(x, y)}{F'_y(x, y)} dxdy=−Fy′(x,y)Fx′(x,y)
其中, F x ′ ( x , y ) F'_x(x, y) Fx′(x,y)、 F y ′ ( x , y ) F'_y(x, y) Fy′(x,y) 分别表示 F ( x , y ) F(x, y) F(x,y)对 x x x和 y y y的偏导数。
(3)利用微分形式不变性
8、常用高阶导数公式
(1) ( a x ) ( n ) = a x ln n a ( a > 0 ) (a^x)^{(n)} = a^x \ln^n a \quad (a > 0) (ax)(n)=axlnna(a>0), ( e x ) ( n ) = e x (e^x)^{(n)} = e^x (ex)(n)=ex
(2) ( sin k x ) ( n ) = k n sin ( k x + n ⋅ π 2 ) (\sin kx)^{(n)} = k^n \sin\left(kx + n \cdot \frac{\pi}{2}\right) (sinkx)(n)=knsin(kx+n⋅2π)
(3) ( cos k x ) ( n ) = k n cos ( k x + n ⋅ π 2 ) (\cos kx)^{(n)} = k^n \cos\left(kx + n \cdot \frac{\pi}{2}\right) (coskx)(n)=kncos(kx+n⋅2π)
(4) ( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n (x^m)^{(n)} = m(m-1)\cdots(m-n+1)x^{m-n} (xm)(n)=m(m−1)⋯(m−n+1)xm−n
(5) ( ln x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^n} (lnx)(n)=(−1)n−1xn(n−1)!
(6)莱布尼兹公式:若 u ( x ) , v ( x ) u(x), v(x) u(x),v(x)均 n n n阶可导,则:
( u v ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) (uv)^{(n)} = \sum_{i=0}^n c_{n}^{i} u^{(i)} v^{(n-i)} (uv)(n)=i=0∑ncniu(i)v(n−i)
其中 u ( 0 ) = u u^{(0)} = u u(0)=u, v ( 0 ) = v v^{(0)} = v v(0)=v
9、微分中值定理
9.1 费马定理
若函数 f ( x ) f(x) f(x)满足条件:
- 函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的某邻域内有定义,并且在此邻域内恒有 f ( x ) ≤ f ( x 0 ) f(x) \leq f(x_0) f(x)≤f(x0)或 f ( x ) ≥ f ( x 0 ) f(x) \geq f(x_0) f(x)≥f(x0)
- f ( x ) f(x) f(x)在 x 0 x_0 x0处可导,则有 f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0
9.2 罗尔定理
设函数 f ( x ) f(x) f(x)满足条件:
- 在闭区间 [ a , b ] [a, b] [a,b]上连续
- 在 ( a , b ) (a, b) (a,b)内可导
- f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b),则在 ( a , b ) (a, b) (a,b)内存在一个 ξ \xi ξ,使 f ′ ( ξ ) = 0 f'(\xi) = 0 f′(ξ)=0
9.3 拉格朗日中值定理
设函数 f ( x ) f(x) f(x)满足条件:
- 在 [ a , b ] [a, b] [a,b]上连续
- 在 ( a , b ) (a, b) (a,b)内可导,则在 ( a , b ) (a, b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b) - f(a)}{b - a} = f'(\xi) b−af(b)−f(a)=f′(ξ)
9.4 柯西中值定理
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足条件:
- 在 [ a , b ] [a, b] [a,b]上连续
- 在 ( a , b ) (a, b) (a,b)内可导且 f ′ ( x ) f'(x) f′(x), g ′ ( x ) g'(x) g′(x)均存在,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g′(x)=0,则在 ( a , b ) (a, b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
10、洛必达法则
10.1 法则Ⅰ( 0 0 \frac{0}{0} 00型不定式极限)
设函数 f ( x ) f(x) f(x), g ( x ) g(x) g(x)满足:
- lim x → x 0 f ( x ) = 0 \lim_{x \to x_0} f(x) = 0 limx→x0f(x)=0, lim x → x 0 g ( x ) = 0 \lim_{x \to x_0} g(x) = 0 limx→x0g(x)=0
- f , g f,g f,g在 x 0 x_0 x0邻域可导( x 0 x_0 x0处除外),且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g′(x)=0
- lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x_0} \frac{f'(x)}{g'(x)} limx→x0g′(x)f′(x)存在(或 ∞ \infty ∞)
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
10.2 法则Ⅰ’( 0 0 \frac{0}{0} 00型, x → ∞ x \to \infty x→∞情形)
设 f , g f,g f,g满足:
- lim x → ∞ f ( x ) = lim x → ∞ g ( x ) = 0 \lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0 limx→∞f(x)=limx→∞g(x)=0
- ∣ x ∣ > X |x| > X ∣x∣>X时 f , g f,g f,g可导, g ′ ( x ) ≠ 0 g'(x) \neq 0 g′(x)=0
- lim x → ∞ f ′ ( x ) g ′ ( x ) \lim_{x \to \infty} \frac{f'(x)}{g'(x)} limx→∞g′(x)f′(x)存在(或 ∞ \infty ∞)
则:
lim x → ∞ f ( x ) g ( x ) = lim x → ∞ f ′ ( x ) g ′ ( x ) \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} x→∞limg(x)f(x)=x→∞limg′(x)f′(x)
10.3 法则Ⅱ( ∞ ∞ \frac{\infty}{\infty} ∞∞型不定式极限)
设 f , g f,g f,g满足:
- lim x → x 0 f ( x ) = lim x → x 0 g ( x ) = ∞ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty limx→x0f(x)=limx→x0g(x)=∞
- f , g f,g f,g在 x 0 x_0 x0邻域可导( x 0 x_0 x0处除外),且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g′(x)=0
- lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x_0} \frac{f'(x)}{g'(x)} limx→x0g′(x)f′(x)存在(或 ∞ \infty ∞)
则:
lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ′ ( x ) g ′ ( x ) \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} x→x0limg(x)f(x)=x→x0limg′(x)f′(x)
10.4 法则Ⅱ’( ∞ ∞ \frac{\infty}{\infty} ∞∞型, x → ∞ x \to \infty x→∞情形)
同理法则Ⅰ’,将 x → x 0 x \to x_0 x→x0替换为 x → ∞ x \to \infty x→∞即可(条件类似)
11、泰勒公式
设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的某邻域内具有 n + 1 n+1 n+1阶导数,则对该邻域内异于 x 0 x_0 x0的任意 x x x,存在 ξ \xi ξ(介于 x 0 x_0 x0与 x x x之间),使得:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) ⋯ f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x) \cdots f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+Rn(x)⋯
其中余项 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的 n n n阶泰勒余项
麦克劳林公式( x 0 = 0 x_0 = 0 x0=0时的泰勒公式)
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x) f(x)=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+Rn(x)
余项 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)xn+1( ξ \xi ξ介于 0 0 0与 x x x之间)
常用函数的麦克劳林公式(带余项)
- 指数函数 e x e^x ex
e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ ( ξ 介于 0 与 x 之间 ) e^x = 1 + x + \frac{1}{2!}x^2 + \cdots + \frac{1}{n!}x^n + \frac{x^{n+1}}{(n+1)!}e^\xi \quad (\xi \text{ 介于 } 0 \text{ 与 } x \text{ 之间}) ex=1+x+2!1x2+⋯+n!1xn+(n+1)!xn+1eξ(ξ 介于 0 与 x 之间)
或
e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) e^x = 1 + x + \frac{1}{2!}x^2 + \cdots + \frac{1}{n!}x^n + o(x^n) ex=1+x+2!1x2+⋯+n!1xn+o(xn) - 正弦函数 sin x \sin x sinx
sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + x n + 1 ( n + 1 ) ! sin ( ξ + n + 1 2 π ) \sin x = x - \frac{1}{3!}x^3 + \cdots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\sin\left(\xi + \frac{n+1}{2}\pi\right) sinx=x−3!1x3+⋯+n!xnsin2nπ+(n+1)!xn+1sin(ξ+2n+1π)
或
sin x = x − 1 3 ! x 3 + ⋯ + x n n ! sin n π 2 + o ( x n ) \sin x = x - \frac{1}{3!}x^3 + \cdots + \frac{x^n}{n!}\sin\frac{n\pi}{2} + o(x^n) sinx=x−3!1x3+⋯+n!xnsin2nπ+o(xn) - 余弦函数 cos x \cos x cosx
cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + x n + 1 ( n + 1 ) ! cos ( ξ + n + 1 2 π ) \cos x = 1 - \frac{1}{2!}x^2 + \cdots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + \frac{x^{n+1}}{(n+1)!}\cos\left(\xi + \frac{n+1}{2}\pi\right) cosx=1−2!1x2+⋯+n!xncos2nπ+(n+1)!xn+1cos(ξ+2n+1π)
或
cos x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos n π 2 + o ( x n ) \cos x = 1 - \frac{1}{2!}x^2 + \cdots + \frac{x^n}{n!}\cos\frac{n\pi}{2} + o(x^n) cosx=1−2!1x2+⋯+n!xncos2nπ+o(xn) - 对数函数 ln ( 1 + x ) \ln(1+x) ln(1+x)
ln ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 \ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots + (-1)^{n-1}\frac{x^n}{n} + \frac{(-1)^n x^{n+1}}{(n+1)(1+\xi)^{n+1}} ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+(n+1)(1+ξ)n+1(−1)nxn+1
或
ln ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) \ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots + (-1)^{n-1}\frac{x^n}{n} + o(x^n) ln(1+x)=x−21x2+31x3−⋯+(−1)n−1nxn+o(xn) - 幂函数 ( 1 + x ) m (1+x)^m (1+x)m
( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + m ( m − 1 ) ⋯ ( m − n ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 (1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \cdots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^n + \frac{m(m-1)\cdots(m-n)}{(n+1)!}x^{n+1}(1+\xi)^{m-n-1} (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn+(n+1)!m(m−1)⋯(m−n)xn+1(1+ξ)m−n−1
或
( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) (1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \cdots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^n + o(x^n) (1+x)m=1+mx+2!m(m−1)x2+⋯+n!m(m−1)⋯(m−n+1)xn+o(xn)
12、函数单调性的判断
12.1 判定定理
设函数 f ( x ) f(x) f(x)在区间 ( a , b ) (a, b) (a,b)内可导,若对于任意 x ∈ ( a , b ) x \in (a, b) x∈(a,b),都有 f ′ ( x ) > 0 f'(x) > 0 f′(x)>0(或 f ′ ( x ) < 0 f'(x) < 0 f′(x)<0),则函数 f ( x ) f(x) f(x)在 ( a , b ) (a, b) (a,b)内是单调增加的(或单调减少)
12.2 取极值的必要条件
设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0处可导,且在 x 0 x_0 x0处取极值,则 f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0
12.3 取极值的第一充分条件
设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的某一邻域内可微,且 f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0(或 f ( x ) f(x) f(x)在 x 0 x_0 x0处连续,但 f ′ ( x 0 ) f'(x_0) f′(x0)不存在):
- 若当 x x x经过 x 0 x_0 x0时, f ′ ( x ) f'(x) f′(x)由“+”变“-”,则 f ( x 0 ) f(x_0) f(x0)为极大值
- 若当 x x x经过 x 0 x_0 x0时, f ′ ( x ) f'(x) f′(x)由“-”变“+”,则 f ( x 0 ) f(x_0) f(x0)为极小值
- 若 f ′ ( x ) f'(x) f′(x)经过 x = x 0 x = x_0 x=x0的两侧不变号,则 f ( x 0 ) f(x_0) f(x0)不是极值
12.4 取极值的第二充分条件
设 f ( x ) f(x) f(x)在点 x 0 x_0 x0处有 f ′ ′ ( x ) ≠ 0 f''(x) \neq 0 f′′(x)=0,且 f ′ ( x 0 ) = 0 f'(x_0) = 0 f′(x0)=0,则:
- 当 f ′ ′ ( x 0 ) < 0 f''(x_0) < 0 f′′(x0)<0时, f ( x 0 ) f(x_0) f(x0)为极大值
- 当 f ′ ′ ( x 0 ) > 0 f''(x_0) > 0 f′′(x0)>0时, f ( x 0 ) f(x_0) f(x0)为极小值
注:如果 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0,此方法失效
13、渐近线的求解
13.1 水平渐近线
若 lim x → + ∞ f ( x ) = b 或 lim x → − ∞ f ( x ) = b \lim_{x \to +\infty} f(x) = b \quad \text{或} \quad \lim_{x \to -\infty} f(x) = b limx→+∞f(x)=b或limx→−∞f(x)=b,则 y = b y = b y=b称为函数 y = f ( x ) y = f(x) y=f(x)的水平渐近线
13.2 铅直渐近线
若 lim x → x 0 − f ( x ) = ∞ 或 lim x → x 0 + f ( x ) = ∞ \lim_{x \to x_0^-} f(x) = \infty \quad \text{或} \quad \lim_{x \to x_0^+} f(x) = \infty limx→x0−f(x)=∞或limx→x0+f(x)=∞,则 x = x 0 x = x_0 x=x0称为 y = f ( x ) y = f(x) y=f(x)的铅直渐近线
13.3 斜渐近线
若 a = lim x → ∞ f ( x ) x , b = lim x → ∞ [ f ( x ) − a x ] a = \lim_{x \to \infty} \frac{f(x)}{x}, \quad b = \lim_{x \to \infty} [f(x) - ax] a=limx→∞xf(x),b=limx→∞[f(x)−ax],则 y = a x + b y = ax + b y=ax+b称为 y = f ( x ) y = f(x) y=f(x)的斜渐近线
14、函数凹凸性的判断
14.1 凹凸性判别定理
若在区间 I I I上 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0(或 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0),则 f ( x ) f(x) f(x)在 I I I上是凸的(或凹的)
14.2 拐点判别定理(第一充分条件)
若在 x 0 x_0 x0处 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0(或 f ′ ′ ( x 0 ) f''(x_0) f′′(x0)不存在),且当 x x x经过 x 0 x_0 x0时, f ′ ′ ( x ) f''(x) f′′(x)变号,则 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))为拐点
14.3 拐点判别定理(第二充分条件)
设 f ( x ) f(x) f(x)在 x 0 x_0 x0点的某邻域内有三阶导数,且 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f′′(x0)=0, f ′ ′ ′ ( x 0 ) ≠ 0 f'''(x_0) \neq 0 f′′′(x0)=0,则 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))为拐点
15、弧微分
d S = 1 + y ′ 2 d x dS = \sqrt{1 + y'^2} \, dx dS=1+y′2dx
16、曲率
16.1 显函数形式 y = f ( x ) y = f(x) y=f(x)
曲线在点 ( x , y ) (x, y) (x,y)处的曲率 k k k为:
k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 / 2 k = \frac{|y''|}{(1 + y'^2)^{3/2}} k=(1+y′2)3/2∣y′′∣
16.2 参数方程形式 { x = φ ( t ) y = ψ ( t ) \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} {x=φ(t)y=ψ(t)
曲线的曲率 k k k为:
k = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 / 2 k = \frac{|\varphi'(t)\psi''(t) - \varphi''(t)\psi'(t)|}{[\varphi'^2(t) + \psi'^2(t)]^{3/2}} k=[φ′2(t)+ψ′2(t)]3/2∣φ′(t)ψ′′(t)−φ′′(t)ψ′(t)∣
17、曲率半径
曲线在点 M M M处的曲率 k k k( k ≠ 0 k \neq 0 k=0)与曲率半径 ρ \rho ρ的关系为:
ρ = 1 k \rho = \frac{1}{k} ρ=k1
微语录:你有那么多的以后,却没有现在,其实没有所谓的好的状态,只有立刻行动的自己,十八岁和二十八岁看到的风景是不一样的。