AGI大模型(33):LangChain之Memory
大多数的 LLM 应用程序都会有一个会话接口,允许我们和 LLM 进行多轮的对话,并有一定的上下文记忆能力。但实际上,模型本身是不会记忆任何上下文的,只能依靠用户本身的输入去产生输出。而实现这个记忆功能,就需要额外的模块去保存我们和模型对话的上下文信息,然后在下一次请求时,把所有的历史信息都输入给模型,让模型输出最终结果。
在没有使用Memory的的情况下,大模型记忆上一次的回答,每次的回答都不相干。如下图:
大多数的 LLM 应用程序都会有一个会话接口,允许我们和 LLM 进行多轮的对话,并有一定的上下文记忆能力。但实际上,模型本身是不会记忆任何上下文的,只能依靠用户本身的输入去产生输出。而实现这个记忆功能,就需要额外的模块去保存我们和模型对话的上下文信息,然后在下一次请求时,把所有的历史信息都输入给模型,让模型输出最终结果。
在没有使用Memory的的情况下,大模型记忆上一次的回答,每次的回答都不相干。如下图: