当前位置: 首页 > news >正文

第R7周:糖尿病预测模型优化探索

文章目录

  • 1.数据预处理
    • 1.1 设置GPU
    • 1.2 数据导入
    • 1.3 数据检查
  • 2. 数据分析
    • 2.1 数据分布分析
    • 2.2 相关性分析
  • 3. LSTM模型
    • 3.1 划分数据集
    • 3.2 数据集构建
    • 3.3 定义模型
  • 4. 训练模型
    • 4.1 定义训练函数
    • 4.2 定义测试函数
    • 4.3 训练模型
  • 5. 模型评估
    • 5.1 Loss与Accuracy图
  • 6. 总结

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

1.数据预处理

1.1 设置GPU

import torch.nn as nn
import torch.nn.functional as F
import torchvision,torchdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type=‘cpu’)

1.2 数据导入

import numpy             as np
import pandas            as pd
import seaborn           as sns
from sklearn.model_selection   import train_test_split
import matplotlib.pyplot as plt
plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签import warnings 
warnings.filterwarnings("ignore")DataFrame=pd.read_excel('dia.xls')
DataFrame.head()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300
DataFrame.shape

(1006, 16)

1.3 数据检查

# 查看数据是否有缺失值
print('数据缺失值---------------------------------')
print(DataFrame.isnull().sum())

数据缺失值---------------------------------
卡号 0
性别 0
年龄 0
高密度脂蛋白胆固醇 0
低密度脂蛋白胆固醇 0
极低密度脂蛋白胆固醇 0
甘油三酯 0
总胆固醇 0
脉搏 0
舒张压 0
高血压史 0
尿素氮 0
尿酸 0
肌酐 0
体重检查结果 0
是否糖尿病 0
dtype: int64

# 查看数据是否有重复值
print('数据重复值---------------------------------')
print('数据集的重复值为:'f'{DataFrame.duplicated().sum()}')

数据重复值---------------------------------
数据集的重复值为:0

2. 数据分析

2.1 数据分布分析

feature_map = {'年龄': '年龄','高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇','低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇','极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇','甘油三酯': '甘油三酯','总胆固醇': '总胆固醇','脉搏': '脉搏','舒张压':'舒张压','高血压史':'高血压史','尿素氮':'尿素氮','尿酸':'尿酸','肌酐':'肌酐','体重检查结果':'体重检查结果'
}
plt.figure(figsize=(15, 10))for i, (col, col_name) in enumerate(feature_map.items(), 1):plt.subplot(3, 5, i)sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col])plt.title(f'{col_name}的箱线图', fontsize=14)plt.ylabel('数值', fontsize=12)plt.grid(axis='y', linestyle='--', alpha=0.7)plt.tight_layout()
plt.show()

在这里插入图片描述

2.2 相关性分析

import plotly
import plotly.express as px# 删除列 '卡号'
DataFrame.drop(columns=['卡号'], inplace=True)
# 计算各列之间的相关系数
df_corr = DataFrame.corr()# 相关矩阵生成函数
def corr_generate(df):fig = px.imshow(df,text_auto=True,aspect="auto",color_continuous_scale='RdBu_r')fig.show()# 生成相关矩阵
corr_generate(df_corr)

3. LSTM模型

3.1 划分数据集

from sklearn.preprocessing import StandardScaler# '高密度脂蛋白胆固醇'字段与糖尿病负相关,故而在 X 中去掉该字段
X = DataFrame.drop(['是否糖尿病','高密度脂蛋白胆固醇'],axis=1)
y = DataFrame['是否糖尿病']# 数据集标准化处理
sc_X    = StandardScaler()
X = sc_X.fit_transform(X)X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,random_state=1)
# 维度扩增使其符合LSTM模型可接受shape
train_X = train_X.unsqueeze(1)
test_X  = test_X.unsqueeze(1)
train_X.shape, train_y.shape

(torch.Size([804, 1, 13]), torch.Size([804]))

3.2 数据集构建

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(train_X, train_y),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(test_X, test_y),batch_size=64, shuffle=False)

3.3 定义模型

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=13 ,hidden_size=200, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=200 ,hidden_size=200, num_layers=1, batch_first=True)self.fc0   = nn.Linear(200, 2)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = out[:, -1, :]  # 只取最后一个时间步的输出out    = self.fc0(out) return out   model = model_lstm().to(device)
model

model_lstm(
(lstm0): LSTM(13, 200, batch_first=True)
(lstm1): LSTM(200, 200, batch_first=True)
(fc0): Linear(in_features=200, out_features=2, bias=True)
)

4. 训练模型

4.1 定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

4.2 定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4.3 训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4   # 学习率
opt        = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs     = 30train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("="*20, 'Done', "="*20)

Epoch: 1, Train_acc:43.8%, Train_loss:0.693, Test_acc:48.0%, Test_loss:0.682, Lr:1.00E-04
Epoch: 2, Train_acc:52.6%, Train_loss:0.684, Test_acc:62.4%, Test_loss:0.676, Lr:1.00E-04
Epoch: 3, Train_acc:68.4%, Train_loss:0.674, Test_acc:69.8%, Test_loss:0.669, Lr:1.00E-04
Epoch: 4, Train_acc:72.9%, Train_loss:0.662, Test_acc:73.8%, Test_loss:0.661, Lr:1.00E-04
Epoch: 5, Train_acc:76.1%, Train_loss:0.648, Test_acc:74.3%, Test_loss:0.651, Lr:1.00E-04
Epoch: 6, Train_acc:76.4%, Train_loss:0.631, Test_acc:73.8%, Test_loss:0.639, Lr:1.00E-04
Epoch: 7, Train_acc:76.1%, Train_loss:0.611, Test_acc:74.3%, Test_loss:0.625, Lr:1.00E-04
Epoch: 8, Train_acc:76.0%, Train_loss:0.588, Test_acc:75.2%, Test_loss:0.610, Lr:1.00E-04
Epoch: 9, Train_acc:75.0%, Train_loss:0.564, Test_acc:75.2%, Test_loss:0.595, Lr:1.00E-04
Epoch:10, Train_acc:75.0%, Train_loss:0.541, Test_acc:75.2%, Test_loss:0.581, Lr:1.00E-04
Epoch:11, Train_acc:75.2%, Train_loss:0.521, Test_acc:75.2%, Test_loss:0.569, Lr:1.00E-04
Epoch:12, Train_acc:75.7%, Train_loss:0.504, Test_acc:75.7%, Test_loss:0.559, Lr:1.00E-04
Epoch:13, Train_acc:75.7%, Train_loss:0.491, Test_acc:75.7%, Test_loss:0.550, Lr:1.00E-04
Epoch:14, Train_acc:75.6%, Train_loss:0.480, Test_acc:76.7%, Test_loss:0.543, Lr:1.00E-04
Epoch:15, Train_acc:75.7%, Train_loss:0.472, Test_acc:76.2%, Test_loss:0.535, Lr:1.00E-04
Epoch:16, Train_acc:76.7%, Train_loss:0.465, Test_acc:76.2%, Test_loss:0.529, Lr:1.00E-04
Epoch:17, Train_acc:77.4%, Train_loss:0.459, Test_acc:76.7%, Test_loss:0.522, Lr:1.00E-04
Epoch:18, Train_acc:77.9%, Train_loss:0.454, Test_acc:77.2%, Test_loss:0.516, Lr:1.00E-04
Epoch:19, Train_acc:78.4%, Train_loss:0.450, Test_acc:77.7%, Test_loss:0.511, Lr:1.00E-04
Epoch:20, Train_acc:78.2%, Train_loss:0.446, Test_acc:77.2%, Test_loss:0.506, Lr:1.00E-04
Epoch:21, Train_acc:78.2%, Train_loss:0.442, Test_acc:77.2%, Test_loss:0.501, Lr:1.00E-04
Epoch:22, Train_acc:78.6%, Train_loss:0.439, Test_acc:77.2%, Test_loss:0.496, Lr:1.00E-04
Epoch:23, Train_acc:78.9%, Train_loss:0.436, Test_acc:77.2%, Test_loss:0.492, Lr:1.00E-04
Epoch:24, Train_acc:78.9%, Train_loss:0.433, Test_acc:77.7%, Test_loss:0.488, Lr:1.00E-04
Epoch:25, Train_acc:79.2%, Train_loss:0.430, Test_acc:77.7%, Test_loss:0.484, Lr:1.00E-04
Epoch:26, Train_acc:79.2%, Train_loss:0.427, Test_acc:78.2%, Test_loss:0.481, Lr:1.00E-04
Epoch:27, Train_acc:79.4%, Train_loss:0.425, Test_acc:79.2%, Test_loss:0.477, Lr:1.00E-04
Epoch:28, Train_acc:79.4%, Train_loss:0.423, Test_acc:79.2%, Test_loss:0.474, Lr:1.00E-04
Epoch:29, Train_acc:79.5%, Train_loss:0.421, Test_acc:79.2%, Test_loss:0.471, Lr:1.00E-04
Epoch:30, Train_acc:79.6%, Train_loss:0.418, Test_acc:79.7%, Test_loss:0.467, Lr:1.00E-04
==================== Done ====================

5. 模型评估

5.1 Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

6. 总结

本周主要实现了实现了对于上一次糖尿病预测模型的优化。通过实践,更加深入地了解了LSTM模型的相关优化。

相关文章:

  • 【Python打卡Day30】模块与包的导入@浙大疏锦行
  • 《P1470 [USACO2.3] 最长前缀 Longest Prefix》
  • Python打卡5.23(day24)
  • Jouier 普及组十连测 R3
  • Claude 4 发布:编码 AI 新纪元的开启
  • 文章记单词 | 第111篇(六级)
  • 文章记单词 | 第114篇(六级)
  • 生成模型——变分自动编码器(Variational Autoencoders, VAEs)
  • 国家网络身份认证公共服务管理办法
  • LEED认证是什么?LEED认证难吗?LEED认证需要准备的资料
  • Android内存调优学习总结(OOM与ANR)
  • 【Qt开发】显示类控件——QLCDNumber
  • VRRP虚拟路由器协议的基本概述
  • 有两个Python脚本都在虚拟环境下运行,怎么打包成一个系统服务,按照顺序启动?
  • linux ptrace 图文详解(九) gdb如何判断被tracee唤醒的原因
  • 数字计数--数位dp
  • 文章记单词 | 第113篇(六级)
  • 反向海淘物流难题如何破解?
  • 文章记单词 | 第105篇(六级)
  • 动态库和静态库详解
  • 女与男爱做电影网站免费下载/网页设计网站
  • 贴吧网站建设/中国新闻网发稿
  • 如何做一个个人网站/微信推广平台自己可以做
  • 网站制作公司 重庆/济南专业seo推广公司
  • 网站制作公司全域营销获客公司/查域名网站
  • 江苏城乡建设职业学院官方网站/重庆seo网站哪家好