数据结构——栈
栈的概念:
栈是一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端成为栈底。栈的元素遵守后进先出原则
压栈 : 栈的插入操作,入数据在栈顶
出栈 : 栈的删除操作,出数据也在栈顶
模拟栈可以用数组或者双向链表来实现,单链表不好处理前一个节点
如果想用单链表做栈,可以让后面一个节点当栈顶,头插数据或头删数据即可
但是由于双向链表比单链表多一个指针,所需空间更大了,所以一般不适用双向链表
下面我们将用数组来对栈进行模拟
我们依然用结构体来定义栈
栈的定义:
typedef struct Stack
{
STDataType* a; //开辟数组
int top; //指向栈顶或栈顶的后一个位置(据情况而定注意前后对应),指的是数组的下标
int capacity; //空间中元素的个数
}ST;
初始化栈:
//初始化栈
void STInit(ST* pst)
{
assert(pst);
pst->a = NULL;
//top 指向栈顶的下一个位置
pst->top = 0;
//top 指向栈顶数据的位置
//pst->top = -1;
pst->capacity = 0;
}
这里我们需要着重强调的是初始化 pst->top 的时候,有两种情况,一个是 top 指向栈顶元素,一个是 top 指向栈顶元素的下一个元素
当 top 指向栈顶元素时,若没有元素存在,top 是 -1 而不是 0,top永远表示数组的下标,若表示 0 则说明有一个元素,不成立,所以 top 初始化为 -1
当 top 指向栈顶元素的下一个元素时,若没有元素存在,则 top 应该指向数组的第一个元素所在位置,也就是 0 ,所以 top 初始化为 0
销毁栈:
//销毁栈
void STDestory(ST* pst)
{
assert(pst);
free(pst->a);
pst->a = NULL;
pst->top = pst->capacity = 0;
}
元素入栈:
//入栈
void STPush(ST* pst, STDataType x)
{
assert(pst);
//扩容
if (pst->top = pst->capacity)
{
int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;
STDataType* tmp = (STDataType*)realloc(pst->a, newcapacity * sizeof(STDataType));
//判断 tmp 是否开辟成功
if (tmp == NULL)
{
perror("realloc fail");
return -1;
}
pst->a = tmp;
pst->capacity = newcapacity;
}
pst->a[pst->top] = x;
pst->top++;
}
我们使用顺序表的扩容方法,栈中空间为 0 则开辟 4 个空间,若不为 0 则在原来空间的基础上乘以 2
同时开辟空间我们也不使用 malloc 而是 realloc ,不用考虑是本地扩容还是异地扩容
元素出栈:
//出栈
void STPop(ST* pst)
{
assert(pst);
assert(pst->top > 0);
pst->top--;
}
注意这里的出栈不是将元素销毁或删除,而是只将栈顶缩小来表示栈的整体大小减少,相当于有元素被舍弃,但没有真正消失
取栈顶数据:
//取栈顶数据
STDataType STTop(ST* pst)
{
assert(pst);
assert(pst->top > 0);
return pst->a[pst->top - 1];
}
判断栈是否为空:
//判空
bool STEmpty(ST* pst)
{
assert(pst);
return pst->top == 0;
}
获取栈中数据的个数:
//获取数据的个数
int STSize(ST* pst)
{
assert(pst);
return pst->top;
}