当前位置: 首页 > news >正文

机器学习 day05

文章目录

  • 前言
  • 一、模型选择与调优
    • 1.交叉验证
    • 2.超参数搜索


前言

通过今天的学习,我掌握了机器学习中模型的选择与调优,包括交叉验证,超参数搜索的概念与基本用法。


一、模型选择与调优

模型的选择与调优有许多方法,这里主要介绍较差验证和超参数搜索。

1.交叉验证

交叉验证就是将数据集进行适当地划分,一部分用于训练,另一部分用于验证。

(1)保留交叉验证
该交叉验证方法将数据集随机划分为训练集和测试集,根据经验法则,整个数据集的近70%被用作训练集,其余30%被用作验证集。这是我们最常用的数据划分方法。

划分过程简单,执行效率高是该方法最大的优点,所以我们最常使用这种划分方式。

该方法的缺点包括:

  • 当数据量较大时,部分数据被划分为测试集,失去了训练的机会,会造成数据浪费。
  • 不平衡的数据集效果较差,如果一个数据集只有两类而划分恰好将两类数据分开,这会导致后续结果准确度下降。

API用法:
sklearn.model_selection.train_test_split(x,y,train_size,shuffle,random_state,stratify=y)

  • stratify参数用于指定分层方式,一般是根据目标进行分层。

tips:结合使用shuffle,stratify参数可以在一定程度上平衡该方法的缺点,但对于不平衡的数据还是建议使用其他方法。

(2)k-折交叉验证
k-折交叉验证将数据集划分为大小相同的k个部分,每一个分区称为一个“Fold”,该方法重复k次,每次将一个Fold被用作验证集,其余的K-1个Fold被用作训练集。

该方法可以保证每一条数据都用作训练和测试,模型最终结果是取这k次训练的平均结果,解决了保留交叉验证中数据浪费的问题。

同时,我们再引入分层的概念,在每一个Fold中保持着原始数据中各个类别的比例关系,这样就可以解决原始数据不平衡的问题。

在这里插入图片描述

该方法的缺点同样明显,在面对海量数据时,每一折意味着多训练一个模型,这对硬件性能要求很高。因此,在实际使用的过程中,我们需要权衡需求和硬件条件,一般选择保留交叉验证。

API用法:
sklearn.model_selection.KFold #普通k-fold
sklearn.model_selection.StratifiedKFold #分层k-fold

  • n_splits指定划分为几个折叠
  • shuffle是否在拆分之前被打乱(随机化)
  • 该API还可以继续调用split方法,返回一个可迭代对象,包括每个fold的训练集,测试集下标。
from sklearn.model_selection import KFoldiris = load_iris()
x,y = load_iris(return_X_y=True)kf = KFold(n_splits=5)
index = kf.split(x,y)for train_index,test_index in index:x_train,x_test = x[train_index],x[test_index]y_train,y_test = y[train_index],y[test_index]print(y_test)

2.超参数搜索

超参数搜索也叫网格搜索,指的是程序自动帮我们找到超参数(人为设定的参数)。

API用法:
sklearn.model_selection.GridSearchCV(estimator, param_grid)

  • estimator: scikit-learn估计器实例
  • param_grid:以参数名称(str)作为键,将参数设置列表尝试作为值的字典,例如KNN中: {“n_neighbors”: [1, 3, 5, 7, 9, 11]}
  • cv指的是交叉验证操作
  • 该方法返回:best_params_ 最佳参数,best_score_ 在训练集中的准确率,best_estimator_ 最佳估计器等属性
estimator = KNeighborsClassifier()# 加入网格搜索与交叉验证, GridSearchCV会让k分别等于1,2,5,7,9,11进行网格搜索偿试。cv=10表示进行10次交叉验证
estimator = GridSearchCV(estimator, param_grid={"n_neighbors": [1, 3, 5, 7, 9, 11]}, cv=10)
estimator.fit(x_train, y_train)

THE END

相关文章:

  • Git客户端安装、操作
  • Vue3 中使用 provide/inject 实现跨层级组件传值失败的原因及解决方案
  • Vue之入门(Vue是什么以及Vue工作原理)
  • 数据要素如何重构人力资本升级
  • 消息传递--树形dp--50?!
  • windows/linux 模拟鼠标键盘输入
  • 创建型:建造者模式
  • 文件操作和IO—初识文件
  • leetcode hot100:三、解题思路大全:哈希(两数之和、字母异位词分组、最长连续序列)、双指针(移动零、盛最多水的容器、三数之和、接雨水)
  • 《C 语言 sizeof 与 strlen 深度对比:原理、差异与实战陷阱》
  • COMSOL软件入门
  • 爱普生Epson PX-S887打印机信息
  • 不同企业数字化转型补贴差异解析:政策导向下的分层激励模式
  • 从零开始的嵌入式学习day24
  • vmware虚拟机中安装win11系统
  • 开疆智能Profinet转RS485网关连接温度送变器配置案例
  • Ai学习之LangChain框架
  • 證券行業證券交易系統開發方案
  • 基于flask+vue的电影可视化与智能推荐系统
  • 小白入门FPGA设计,如何快速学习?
  • 淡出政治舞台?马斯克称将削减政治开支:已经做得够多了
  • 日本农林水产大臣因不当“大米言论”引咎辞职
  • 秦洪看盘|热门股或将退潮,短线波动难免
  • 竞彩湃|水晶宫夺冠后乘胜追击,四大皆空曼城人间清醒?
  • 河南通报部分未检疫生猪流入:立案查处,涉案猪肉被封存
  • 益阳通报“河水颜色异常有死鱼”:未发现排污,原因待鉴定