数值分析证明题
文章目录
- 第一题
- 第二题
- 第三题
- 第四题
- 第五题
- 第六题
- 第七题
- 第八题
- 第九题
第一题
例
给出 cos x \cos x cosx, x ∈ [ 0 ∘ , 9 0 ∘ ] x\in[0^{\circ},90^{\circ}] x∈[0∘,90∘]的函数表,步长 h = 1 ′ = ( 1 60 ) ∘ h = 1' = (\frac{1}{60})^{\circ} h=1′=(601)∘,若函数表具有 5 5 5位有效数字,研究用线性插值求 cos x \cos x cosx近似值时的总误差界。
解:
用函数值及近似值所建立的线性插值多项式为
当 x ∈ [ x i , x i + 1 ] x \in [x_i, x_{i + 1}] x∈[xi,xi+1]时
L i ( x ) = f ( x i ) x − x i + 1 x i − x i + 1 + f ( x i + 1 ) x − x i x i + 1 − x i L_i(x) = f(x_i)\frac{x - x_{i + 1}}{x_i - x_{i + 1}} + f(x_{i + 1})\frac{x - x_i}{x_{i + 1} - x_i} Li(x)=f(xi)xi−xi+1x−xi+1+f(xi+1)xi+1−xix−xi
L i ∗ ( x ) = f ∗ ( x i ) x − x i + 1 x i − x i + 1 + f ∗ ( x i + 1 ) x − x i x i + 1 − x i L_i^*(x) = f^*(x_i)\frac{x - x_{i + 1}}{x_i - x_{i + 1}} + f^*(x_{i + 1})\frac{x - x_i}{x_{i + 1} - x_i} Li∗(x)=f∗(xi)xi−xi+1x−xi+1+f∗(xi+1)xi+1−xix−xi
式中 x i = i 60 π 180 = i π 10800 x_i = \frac{i}{60}\frac{\pi}{180} = \frac{i\pi}{10800} xi=60i180π=10800iπ ( i = 0 , 1 , 2 , ⋯ , 4500 ) (i = 0, 1, 2, \cdots, 4500) (i=0,1,2,⋯,4500),这样得到步长 h = π 10800 h = \frac{\pi}{10800} h=10800π。
于是有
∣ cos x − L i ∗ ( x ) ∣ = ∣ cos x − L i ( x ) + L i ( x ) − L i ∗ ( x ) ∣ ≤ ∣ cos x − L i ( x ) ∣ + ∣ L i ( x ) − L i ∗ ( x ) ∣ \vert \cos x - L_i^*(x) \vert = \vert \cos x - L_i(x) + L_i(x) - L_i^*(x) \vert \leq \vert \cos x - L_i(x) \vert + \vert L_i(x) - L_i^*(x) \vert ∣cosx−Li∗(x)∣=∣cosx−Li(x)+Li(x)−Li∗(x)∣≤∣cosx−Li(x)∣+∣Li(x)−Li∗(x)∣
从上式可以看出,如果忽略算术运算过程中进一步引入的舍人误差,那么插值误差包含截断误差 ∣ cos x − L i ( x ) ∣ \vert \cos x - L_i(x) \vert ∣cosx−Li(x)∣及初始数据误差的传播两部分。
截断误差
∣ cos x − L i ( x ) ∣ = ∣ 1 2 ! ( − sin ξ ) ( x − x i ) ( x − x i + 1 ) ∣ ≤ 1 2 max ξ ∈ [ x i , x i + 1 ] ∣ ( x − x i ) ( x − x i + 1 ) ∣ ≤ 1 2 [ 1 2 π 10800 ] 2 ≈ 1.06 × 1 0 − 9 \begin{align*} \vert \cos x - L_i(x) \vert &= \left\vert \frac{1}{2!}(-\sin \xi)(x - x_i)(x - x_{i + 1}) \right\vert \\ &\leq \frac{1}{2}\max_{\xi \in [x_i, x_{i + 1}]} \vert (x - x_i)(x - x_{i + 1}) \vert \\ &\leq \frac{1}{2} \left[ \frac{1}{2} \frac{\pi}{10800} \right]^2 \approx 1.06 \times 10^{-9} \end{align*} ∣cosx−Li(x)∣= 2!1(−sinξ)(x−xi)(x−xi+1) ≤21ξ∈[xi,xi+1]max∣(x−xi)(x−xi+1)∣≤21[2110800π]2≈1.06×10−9
利用有效数字定义有
∣ e ( f ∗ ( x i ) ) ∣ ⩽ 1 2 × 1 0 m i − n + 1 = 1 2 × 1 0 m i − 4 \vert e(f^*(x_i)) \vert \leqslant \frac{1}{2} \times 10^{m_i - n + 1} = \frac{1}{2} \times 10^{m_i - 4} ∣e(f∗(xi))∣⩽21×10mi−n+1=21×10mi−4
式中 m i m_i mi为函数值 f ∗ ( x i ) f^*(x_i) f∗(xi)的量级,即有 1 0 m i < ∣ f ∗ ( x i ) ∣ < 1 0 m i + 1 10^{m_i} < \vert f^*(x_i) \vert < 10^{m_i + 1} 10mi<∣f∗(xi)∣<10mi+1。
进而
M i , i + 1 ⩽ max { 1 2 × 1 0 m i − 4 , 1 2 × 1 0 m i + 1 − 4 } = 1 2 × 1 0 max { m i , m i + 1 } − 4 M_{i, i + 1} \leqslant \max \left\{ \frac{1}{2} \times 10^{m_i - 4}, \frac{1}{2} \times 10^{m_{i + 1} - 4} \right\} = \frac{1}{2} \times 10^{\max\{m_i, m_{i + 1}\} - 4} Mi,i+1⩽max{21×10mi−4,21×10mi+1−4}=21×10max{mi,mi+1}−4
综合以上结果有
∣ cos x − L i ∗ ( x ) ∣ ⩽ 1.06 × 1 0 − 9 + 1 2 × 1 0 max { m i , m i + 1 } − 4 , x ∈ ( x i , x i + 1 ) , i = 0 , 1 , 2 , ⋯ , 5399 \vert \cos x - L_i^*(x) \vert \leqslant 1.06 \times 10^{-9} + \frac{1}{2} \times 10^{\max\{m_i, m_{i + 1}\} - 4} , x \in (x_i, x_{i + 1}), i = 0, 1, 2, \cdots, 5399 ∣cosx−Li∗(x)∣⩽1.06×10−9+21×10max{mi,mi+1}−4,x∈(xi,xi+1),i=0,1,2,⋯,5399
在区间 [ 0 , π 2 ] \left[0, \frac{\pi}{2}\right] [0,2π]上的总误差界为
∣ cos x − L i ∗ ( x ) ∣ ⩽ 1.06 × 1 0 − 9 + 1 2 × 1 0 − 5 = 0.50106 × 1 0 − 5 \vert \cos x - L_i^*(x) \vert \leqslant 1.06 \times 10^{-9} + \frac{1}{2} \times 10^{-5} = 0.50106 \times 10^{-5} ∣cosx−Li∗(x)∣⩽1.06×10−9+21×10−5=0.50106×10−5
第二题
例
设 f ( x ) ∈ C 2 [ a , b ] f(x) \in C^2[a,b] f(x)∈C2[a,b] 且 f ( a ) = f ( b ) = 0 f(a) = f(b) = 0 f(a)=f(b)=0,求证:
max a ≤ x ≤ b ∣ f ( x ) ∣ ≤ 1 8 ( b − a ) 2 max a ≤ x ≤ b ∣ f ′ ′ ( x ) ∣ \max_{a \leq x \leq b} |f(x)| \leq \frac{1}{8}(b - a)^2 \max_{a \leq x \leq b} |f''(x)| a≤x≤bmax∣f(x)∣≤81(b−a)2a≤x≤bmax∣f′′(x)∣
证明:
以 x = a x = a x=a 和 x = b x = b x=b 为插值节点,建立 f ( x ) f(x) f(x) 的不超过一次的插值多项式
L 1 ( x ) = f ( a ) x − b a − b + f ( b ) x − a b − a ≡ 0 L_1(x) = f(a)\frac{x - b}{a - b} + f(b)\frac{x - a}{b - a} \equiv 0 L1(x)=f(a)a−bx−b+f(b)b−ax−a≡0
应用插值余项公式有
∣ f ( x ) − L 1 ( x ) ∣ = ∣ 1 2 ! f ′ ′ ( ξ ) ( x − a ) ( x − b ) ∣ , ξ ∈ ( a , b ) ≤ 1 2 max a ≤ x ≤ b ∣ f ′ ′ ( x ) ∣ ⋅ max a ≤ x ≤ b ∣ ( x − a ) ( x − b ) ∣ \begin{aligned} |f(x) - L_1(x)| &= \left| \frac{1}{2!} f''(\xi)(x - a)(x - b) \right|, \quad \xi \in (a,b) \\ &\leq \frac{1}{2} \max_{a \leq x \leq b} |f''(x)| \cdot \max_{a \leq x \leq b} |(x - a)(x - b)| \\ \end{aligned} ∣f(x)−L1(x)∣= 2!1f′′(ξ)(x−a)(x−b) ,ξ∈(a,b)≤21a≤x≤bmax∣f′′(x)∣⋅a≤x≤bmax∣(x−a)(x−b)∣
令 g ( x ) = ( x − a ) ( x − b ) = x 2 − ( a + b ) x + a b g(x) = (x - a)(x - b) = x^2 - (a + b)x + ab g(x)=(x−a)(x−b)=x2−(a+b)x+ab,求导得 g ′ ( x ) = 2 x − ( a + b ) g'(x) = 2x - (a + b) g′(x)=2x−(a+b),令 g ′ ( x ) = 0 g'(x) = 0 g′(x)=0,得 x = a + b 2 x = \frac{a + b}{2} x=2a+b。
代入 g ( x ) g(x) g(x) 得
g ( a + b 2 ) = − ( b − a ) 2 4 , g\left(\frac{a + b}{2}\right) = -\frac{(b - a)^2}{4}, g(2a+b)=−4(b−a)2,
故
max a ≤ x ≤ b ∣ ( x − a ) ( x − b ) ∣ = ( b − a ) 2 4 . \max_{a \leq x \leq b} |(x - a)(x - b)| = \frac{(b - a)^2}{4}. a≤x≤bmax∣(x−a)(x−b)∣=4(b−a)2.
代入上式得
∣ f ( x ) − L 1 ( x ) ∣ ≤ 1 2 max a ≤ x ≤ b ∣ f ′ ′ ( x ) ∣ ⋅ ( b − a ) 2 4 = 1 8 ( b − a ) 2 max a ≤ x ≤ b ∣ f ′ ′ ( x ) ∣ . \begin{aligned} |f(x) - L_1(x)| &\leq \frac{1}{2} \max_{a \leq x \leq b} |f''(x)| \cdot \frac{(b - a)^2}{4} \\ &= \frac{1}{8}(b - a)^2 \max_{a \leq x \leq b} |f''(x)|. \end{aligned} ∣f(x)−L1(x)∣≤21a≤x≤bmax∣f′′(x)∣⋅4(b−a)2=81(b−a)2a≤x≤bmax∣f′′(x)∣.
因此,
max a ≤ x ≤ b ∣ f ( x ) ∣ ≤ 1 8 ( b − a ) 2 max a ≤ x ≤ b ∣ f ′ ′ ( x ) ∣ . \max_{a \leq x \leq b} |f(x)| \leq \frac{1}{8}(b - a)^2 \max_{a \leq x \leq b} |f''(x)|. a≤x≤bmax∣f(x)∣≤81(b−a)2a≤x≤bmax∣f′′(x)∣.
第三题
例
证明不同的节点 x j x_j xj,有对于任意正整数 k k k
∑ j = 0 n ( x j − x ) k l j ( x ) ≡ 0 \sum_{j=0}^{n}(x_j-x)^{k}l_j(x)\equiv 0 j=0∑n(xj−x)klj(x)≡0
证明
= ∑ j = 0 n ( x j − x ) k l j ( x ) = ∑ j = 0 n [ l j ( x ) ∑ i = 0 k ( k i ) x j i ( − x ) k − i ] = ∑ j = 0 n ∑ i = 0 k [ ( k i ) x j i ( − x ) k − i l j ( x ) ] (交换求和次序) = ∑ i = 0 k ∑ j = 0 n [ ( k i ) x j i ( − x ) k − i l j ( x ) ] (有关因子提出求和符号外) = ∑ i = 0 k [ ( k i ) ( − x ) k − i ∑ j = 0 n x j i l j ( x ) ] = ∑ i = 0 k ( k i ) ( − x ) k − i x i \begin{align*} &\phantom{=} \sum_{j=0}^{n} (x_j - x)^k l_j(x) \\ &= \sum_{j=0}^{n} \left[ l_j(x) \sum_{i=0}^{k} \binom{k}{i} x_j^i (-x)^{k-i} \right] \\ &= \sum_{j=0}^{n} \sum_{i=0}^{k} \left[ \binom{k}{i} x_j^i (-x)^{k-i} l_j(x) \right] \quad \text{(交换求和次序)} \\ &= \sum_{i=0}^{k} \sum_{j=0}^{n} \left[ \binom{k}{i} x_j^i (-x)^{k-i} l_j(x) \right] \quad \text{(有关因子提出求和符号外)} \\ &= \sum_{i=0}^{k} \left[ \binom{k}{i} (-x)^{k-i} \sum_{j=0}^{n} x_j^i l_j(x) \right] \\ &= \sum_{i=0}^{k} \binom{k}{i} (-x)^{k-i} x^i \end{align*} =j=0∑n(xj−x)klj(x)=j=0∑n[lj(x)i=0∑k(ik)xji(−x)k−i]=j=0∑ni=0∑k[(ik)xji(−x)k−ilj(x)](交换求和次序)=i=0∑kj=0∑n[(ik)xji(−x)k−ilj(x)](有关因子提出求和符号外)=i=0∑k[(ik)(−x)k−ij=0∑nxjilj(x)]=i=0∑k(ik)(−x)k−ixi
第四题
例
∑ k = 0 n − 1 f k Δ g k = f n g n − f 0 g 0 − ∑ k = 0 n − 1 g k + 1 Δ f k \sum_{k=0}^{n-1}f_{k}\Delta g_{k}=f_ng_n-f_0g_0-\sum_{k=0}^{n-1}g_{k+1}\Delta f_{k} k=0∑n−1fkΔgk=fngn−f0g0−k=0∑n−1gk+1Δfk
这个是著名的阿贝尔变换
∑ k = m n f k Δ g k = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 Δ f k \sum_{k=m}^{n}f_{k}\Delta g_{k}=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}\Delta f_{k} k=m∑nfkΔgk=fn+1gn+1−fmgm−k=m∑n−1gk+1Δfk
证明
∑ k = m n f k Δ g k = ∑ k = m n f k g k + 1 − ∑ k = m n f k g k = ∑ k = m n f k g k + 1 − ∑ k = m + 1 n + 1 f k g k + f n + 1 g n + 1 − f m g m = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 ( f k + 1 − f k ) ) = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 Δ f k \begin{align*} \sum_{k=m}^{n}f_{k}\Delta g_{k} &=\sum_{k=m}^{n}f_kg_{k+1}-\sum_{k=m}^{n}f_kg_k \\ &=\sum_{k=m}^{n}f_kg_{k+1}-\sum_{k=m+1}^{n+1}f_kg_k+f_{n+1}g_{n+1}-f_{m}g_{m} \\ &=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}(f_{k+1}-f_{k})) \\ &=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}\Delta f_{k} \end{align*} k=m∑nfkΔgk=k=m∑nfkgk+1−k=m∑nfkgk=k=m∑nfkgk+1−k=m+1∑n+1fkgk+fn+1gn+1−fmgm=fn+1gn+1−fmgm−k=m∑n−1gk+1(fk+1−fk))=fn+1gn+1−fmgm−k=m∑n−1gk+1Δfk
赋值: m = 0 , n = n − 1 m=0,n=n-1 m=0,n=n−1即可得到:
∑ k = m n f k Δ g k = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 Δ f k \sum_{k=m}^{n}f_{k}\Delta g_{k}=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}\Delta f_{k} k=m∑nfkΔgk=fn+1gn+1−fmgm−k=m∑n−1gk+1Δfk
第五题
例
若 f ( x ) = a 0 + a 1 x + ⋯ + a n − 1 x n − 1 + a n x n f(x)=a_{0}+a_{1}x+\cdots +a_{n - 1}x^{n - 1}+a_{n}x^{n} f(x)=a0+a1x+⋯+an−1xn−1+anxn有 n n n个不同实根 x 1 , x 2 , ⋯ , x n x_{1},x_{2},\cdots,x_{n} x1,x2,⋯,xn,证明:
∑ j = 1 n x j k f ′ ( x j ) = { 0 , 0 ≤ k ≤ n − 2 1 a n , k = n − 1 \sum_{j = 1}^{n}\frac{x_{j}^{k}}{f^\prime(x_{j})}= \begin{cases} 0, & 0\leq k\leq n - 2\\ \frac{1}{a_{n}}, & k = n - 1 \end{cases} j=1∑nf′(xj)xjk={0,an1,0≤k≤n−2k=n−1
证明
由题目条件知道:
f ( x ) = a 0 + a 1 x + ⋯ + a n − 1 x n − 1 + a n x n = a n ∏ i = 1 n ( x − x i ) f(x)=a_{0}+a_{1}x+\cdots +a_{n - 1}x^{n - 1}+a_{n}x^{n}=a_n\prod_{i=1}^{n}(x-x_i) f(x)=a0+a1x+⋯+an−1xn−1+anxn=ani=1∏n(x−xi)
带入可以得到:
∑ j = 1 n x j k f ′ ( x j ) = ∑ j = 1 n x j k a n ∏ i ≠ j n ( x − x i ) = 1 a n ∑ j = 1 n x j k ∏ i ≠ j n ( x − x i ) = 1 a n g [ x 1 , x 2 , ⋯ , x n ] = { 0 , 0 ≤ k ≤ n − 2 1 a n , k = n − 1 \begin{align*} \sum_{j = 1}^{n}\frac{x_{j}^{k}}{f^\prime(x_{j})}&=\sum_{j = 1}^{n}\frac{x_{j}^{k}}{a_n\prod\limits_{i\ne j}^{n}(x-x_i)}\\ &=\frac{1}{a_n}\sum_{j = 1}^{n}\frac{x_{j}^{k}}{\prod\limits_{i\ne j}^{n}(x-x_i)}\\ &=\frac{1}{a_n}g[x_1,x_2,\cdots,x_n] \\ &=\begin{cases} 0, & 0\leq k\leq n - 2\\ \frac{1}{a_{n}}, & k = n - 1 \end{cases} \end{align*} j=1∑nf′(xj)xjk=j=1∑nani=j∏n(x−xi)xjk=an1j=1∑ni=j∏n(x−xi)xjk=an1g[x1,x2,⋯,xn]={0,an1,0≤k≤n−2k=n−1
其中, g ( x ) = x k g(x)=x^k g(x)=xk。
第六题
证明以下求积分公式:
∫ a b f ( x ) d x = ( b − a ) f ( a ) + f ′ ( η ) 2 ( b − a ) 2 \int_{a}^{b}f(x)\text{d}x=(b-a)f(a)+\frac{f^{\prime}(\eta)}{2}(b-a)^2 ∫abf(x)dx=(b−a)f(a)+2f′(η)(b−a)2
∫ a b f ( x ) d x = ( b − a ) f ( b ) + f ′ ( η ) 2 ( b − a ) 2 \int_{a}^{b}f(x)\text{d}x=(b-a)f(b)+\frac{f^{\prime}(\eta)}{2}(b-a)^2 ∫abf(x)dx=(b−a)f(b)+2f′(η)(b−a)2
∫ a b f ( x ) d x = ( b − a ) f ( a + b 2 ) + f ′ ′ ( η ) 24 ( b − a ) 3 \int_{a}^{b}f(x)\text{d}x=(b-a)f\left(\frac{a+b}{2}\right)+\frac{f^{\prime\prime}(\eta)}{24}(b-a)^3 ∫abf(x)dx=(b−a)f(2a+b)+24f′′(η)(b−a)3
证明
对于 f ( x ) f(x) f(x)进行泰勒展开:
f ( x ) = f ( x 0 ) + f ′ ( ξ ) 1 ! ( x − x 0 ) f(x)=f(x_0)+\frac{f^{\prime}(\xi)}{1!}(x-x_0) f(x)=f(x0)+1!f′(ξ)(x−x0)
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( ξ ) 2 ! ( x − x 0 ) 2 f(x)=f(x_0)+\frac{f^{\prime}(x_0)}{1!}(x-x_0)+\frac{f^{\prime\prime}(\xi)}{2!}(x-x_0)^2 f(x)=f(x0)+1!f′(x0)(x−x0)+2!f′′(ξ)(x−x0)2
对第一个公式进行赋值 x 0 = a , b x_0=a,b x0=a,b,在 [ a , b ] [a,b] [a,b]区间上进行积分:
∫ a b f ( x ) d x = ( b − a ) f ( x 0 ) + f ′ ( ξ ) 2 ( b − a ) 2 \int_{a}^{b}f(x)\text{d}x=(b-a)f(x_0)+\frac{f^{\prime}(\xi)}{2}(b-a)^2 ∫abf(x)dx=(b−a)f(x0)+2f′(ξ)(b−a)2
对于第二个公式:
选择 x 0 = a + b 2 x_0=\frac{a+b}{2} x0=2a+b
∫ a b f ( x ) = ∫ a b ( f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( ξ ) 2 ! ( x − x 0 ) 2 ) d x \int_{a}^{b}f(x)=\int_{a}^{b}\left(f(x_0)+\frac{f^{\prime}(x_0)}{1!}(x-x_0)+\frac{f^{\prime\prime}(\xi)}{2!}(x-x_{0})^2\right)\text{d}x ∫abf(x)=∫ab(f(x0)+1!f′(x0)(x−x0)+2!f′′(ξ)(x−x0)2)dx
积分化简得到:
∫ a b f ( x ) d x = ( b − a ) f ( a + b 2 ) + f ′ ′ ( η ) 24 ( b − a ) 3 \int_{a}^{b}f(x)\text{d}x=(b-a)f\left(\frac{a+b}{2}\right)+\frac{f^{\prime\prime}(\eta)}{24}(b-a)^3 ∫abf(x)dx=(b−a)f(2a+b)+24f′′(η)(b−a)3
第七题
例
设 A \boldsymbol{A} A是对称矩阵且 a 11 ≠ 0 a_{11}\neq0 a11=0,经过一步高斯消去法后, A \boldsymbol{A} A约化为
( a 11 a 1 T 0 A 2 ) \begin{pmatrix} a_{11} & \boldsymbol{a}_{1}^{\mathrm{T}}\\ \boldsymbol{0} & \boldsymbol{A}_{2} \end{pmatrix} (a110a1TA2)
证明 A 2 \boldsymbol{A}_2 A2是对称矩阵。
证明
变化过后的矩阵元素记为 a i j ( 2 ) a^{(2)}_{ij} aij(2):
a i j ( 2 ) = a i j − a i 1 a 11 a 1 j a_{ij}^{(2)}=a_{ij}-\frac{a_{i1}}{a_{11}}a_{1j} aij(2)=aij−a11ai1a1j
类似的:
a j i ( 2 ) = a j i − a 1 i a 11 a j 1 a_{ji}^{(2)}=a_{ji}-\frac{a_{1i}}{a_{11}}a_{j1} aji(2)=aji−a11a1iaj1
由于 A \boldsymbol{A} A为对称矩阵
a i j = a j i a_{ij}=a_{ji} aij=aji
所以:
a i j ( 2 ) = a j i ( 2 ) a_{ij}^{(2)}=a_{ji}^{(2)} aij(2)=aji(2)
故 A 2 \boldsymbol{A}_2 A2是对称矩阵。
第八题
例
设 A = ( a i j ) \boldsymbol{A}=(a_{ij}) A=(aij) 是对称正定矩阵,经过高斯消去法一步后, 约化为
( a 11 a 1 T 0 A 2 ) \begin{pmatrix} a_{11} & \boldsymbol{a}_{1}^{\mathrm{T}}\\ \boldsymbol{0} & \boldsymbol{A}_{2} \end{pmatrix} (a110a1TA2)
其中 A 2 = ( a i j ( 2 ) ) i , j = 2 n A_{2}=(a_{ij}^{(2)})_{i,j = 2}^{n} A2=(aij(2))i,j=2n。证明:
- A \boldsymbol{A} A 的对角元素 a i i > 0 , i = 1 , 2 , ⋯ , n a_{ii}>0,i = 1,2,\cdots,n aii>0,i=1,2,⋯,n;
- A 2 \boldsymbol{A}_{2} A2 是对称正定矩阵。
证明
(1)
由正定矩阵的定义:
∀ x , x T A x > 0 \forall \boldsymbol{x} , \boldsymbol{x}^{\text{T}}\boldsymbol{Ax}>0 ∀x,xTAx>0
取 x = e i \boldsymbol{x}=\boldsymbol{e}_{i} x=ei,其中 i i i表示单位向量的第 i i i个分量不为 0 0 0。
有:
a i i = e i T A e i > 0 a_{ii}=\boldsymbol{e}_{i}^{\text{T}}\boldsymbol{A}\boldsymbol{e}_{i}>0 aii=eiTAei>0
(2)
由 A A A 的对称性及消元公式得
a i j ( 2 ) = a i j − a i 1 a 11 a 1 j = a j i − a j 1 a 11 a 1 i = a j i ( 2 ) , i , j = 2 , … , n \begin{align*} a_{ij}^{(2)} &= a_{ij} - \frac{a_{i1}}{a_{11}}a_{1j}\\ &= a_{ji} - \frac{a_{j1}}{a_{11}}a_{1i} = a_{ji}^{(2)}, \quad i, j = 2, \dots, n \end{align*} aij(2)=aij−a11ai1a1j=aji−a11aj1a1i=aji(2),i,j=2,…,n
故 A 2 \mathbf{A}_2 A2 也对称。
又
( a 11 a 1 ⊤ 0 A 2 ) = L 1 A \begin{pmatrix} a_{11} & \mathbf{a}_1^\top \\ \mathbf{0} & \mathbf{A}_2 \end{pmatrix} = \mathbf{L}_1 \mathbf{A} (a110a1⊤A2)=L1A
其中 L 1 = [ 1 − a 21 a 11 1 ⋮ ⋱ − a n 1 a 11 … 1 ] \mathbf{L}_1 = \begin{bmatrix} 1 & & \\ -\frac{a_{21}}{a_{11}} & 1 & \\ \vdots & & \ddots \\ -\frac{a_{n1}}{a_{11}} & \dots & 1 \end{bmatrix} L1= 1−a11a21⋮−a11an11…⋱1 。
L 1 \mathbf{L}_1 L1非奇异,从而对任意的 $ \mathbf{x} \neq 0$,有
L 1 ⊤ x ≠ 0 \mathbf{L}_1^\top \mathbf{x} \neq 0 L1⊤x=0, ( x , L 1 A L 1 ⊤ x ) = ( L 1 ⊤ x , A L 1 ⊤ x ) > 0 (\mathbf{x}, \mathbf{L}_1 \mathbf{A} \mathbf{L}_1^\top \mathbf{x}) = (\mathbf{L}_1^\top \mathbf{x}, \mathbf{A} \mathbf{L}_1^\top \mathbf{x}) > 0 (x,L1AL1⊤x)=(L1⊤x,AL1⊤x)>0故 $\mathbf{L}_1 \mathbf{A} \mathbf{L}_1^\top $ 正定。
又
L 1 A L 1 ⊤ = ( a 11 0 0 A 2 ) \mathbf{L}_1 \mathbf{A} \mathbf{L}_1^\top = \begin{pmatrix} a_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{pmatrix} L1AL1⊤=(a1100A2)
而 a 11 > 0 a_{11} > 0 a11>0,故 A 2 \mathbf{A}_2 A2 正定。
第九题
例
给定函数 f ( x ) f(x) f(x),设对一切 x x x, f ′ ( x ) f^{\prime}(x) f′(x) 存在且 0 < m ⩽ f ′ ( x ) ⩽ M 0 < m \leqslant f^{\prime}(x)\leqslant M 0<m⩽f′(x)⩽M,证明对于范围 0 < λ < 2 / M 0 < \lambda<2/M 0<λ<2/M 内的任意定数 λ \lambda λ,迭代过程
x k + 1 = x k − λ f ( x k ) x_{k + 1}=x_{k}-\lambda f(x_{k}) xk+1=xk−λf(xk)
均收敛于 f ( x ) = 0 f(x)=0 f(x)=0 的根 x ∗ x^{*} x∗。
证明
迭代函数为
φ ( x ) = x − λ f ( x ) \varphi(x)=x-\lambda f(x) φ(x)=x−λf(x)
得到收敛的充分条件:
∣ 1 − λ f ′ ( x ∗ ) ∣ < 1 |1-\lambda f^{\prime}(x^{*})|<1 ∣1−λf′(x∗)∣<1
满足
f ′ ( x ∗ ) ∈ ( 0 , 2 λ ) f^{\prime}(x^*)\in\left(0,\frac{2}{\lambda}\right) f′(x∗)∈(0,λ2)
验证知道一定满足。