基于MLKit的Android人脸识别应用开发实践
基于MLKit的Android人脸识别应用开发实践
https://gitee.com/wenhua512/face-recognition
1. 项目概述
1.1 功能特点
- 实时人脸检测与跟踪
- 人脸特征提取与识别
- 自动/手动采集模式
- 人脸数据管理
- 相机参数优化
1.2 技术选型
- MLKit人脸检测
- MediaPipe人脸网格
- CameraX相机框架
- Room数据库
- Kotlin协程
2. 核心实现
2.1 人脸检测配置
private fun createFaceDetector(): FaceDetector {val options = FaceDetectorOptions.Builder().setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_FAST).setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL).setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL).setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL).setMinFaceSize(0.15f).build()return FaceDetection.getClient(options)
}
2.2 相机预览实现
private fun startCamera() {val cameraProviderFuture = ProcessCameraProvider.getInstance(this)cameraProviderFuture.addListener({val cameraProvider = cameraProviderFuture.get()val preview = Preview.Builder().setTargetResolution(targetResolution).build().also {it.setSurfaceProvider(binding.viewFinder.surfaceProvider)}val imageAnalyzer = ImageAnalysis.Builder().setTargetResolution(targetResolution).setBackpressureStrategy(ImageAnalysis.STRATEGY_BLOCK_PRODUCER).build().also {it.setAnalyzer(cameraExecutor, FaceAnalyzer())}val cameraSelector = CameraSelector.DEFAULT_FRONT_CAMERAtry {cameraProvider.unbindAll()cameraProvider.bindToLifecycle(this, cameraSelector, preview, imageAnalyzer)} catch(exc: Exception) {Log.e(TAG, "相机绑定失败", exc)}}, ContextCompat.getMainExecutor(this))
}
2.3 人脸特征提取
private suspend fun extractFaceFeatures(bitmap: Bitmap): FloatArray? {return withContext(Dispatchers.IO) {try {val faceBitmap = cropFace(bitmap, faceMesh.boundingBox)val processedBitmap = ImagePreprocessor.process(faceBitmap,shouldNormalizeLighting = true,shouldEnhanceContrast = true,shouldEqualizeHistogram = true)faceFeatureExtractor.extractFeatures(processedBitmap)} catch (e: Exception) {Log.e(TAG, "特征提取失败", e)null}}
}
3. 性能优化
3.1 图像处理优化
- 使用YUV格式处理图像
- 实现图像缓存机制
- 优化人脸裁剪算法
3.2 内存管理
private fun cleanupResources() {try {if (::cameraExecutor.isInitialized && !cameraExecutor.isShutdown) {cameraExecutor.shutdown()}currentFaceBitmap?.recycle()currentFaceBitmap = nulllatestBitmap?.recycle()latestBitmap = nullcollectedFeatures.clear()} catch (e: Exception) {Log.e(TAG, "资源清理失败", e)}
}
3.3 多线程处理
private val processingMutex = Mutex()
private val processIntervalMs = 1000Lprivate suspend fun processFrame(bitmap: Bitmap) {if (!processingMutex.tryLock()) returntry {val currentTime = System.currentTimeMillis()if (currentTime - lastProcessTime < processIntervalMs) return// 处理逻辑lastProcessTime = currentTime} finally {processingMutex.unlock()}
}
4. 用户体验优化
4.1 采集模式切换
private fun updateCollectionModeUI() {binding.apply {autoCollectLayout.visibility = if (isAutoCollectMode) View.VISIBLE else View.GONEmanualCollectLayout.visibility = if (isAutoCollectMode) View.GONE else View.VISIBLEif (isAutoCollectMode) {tvStatus.text = "自动采集模式:请保持人脸在框内..."} else {Toast.makeText(this@FaceAutoCollectActivity, "手动采集模式:请保持人脸在框内...", Toast.LENGTH_SHORT).show()}}
}
4.2 人脸质量检测
private fun isValidFaceMesh(faceMesh: FaceMesh, imageProxy: ImageProxy): Boolean {// 检查人脸角度val faceAngle = calculateFaceAngle(faceMesh)if (abs(faceAngle) > MAX_FACE_ANGLE) {showHint("请保持正面朝向摄像头")return false}// 检查人脸大小val faceSize = calculateFaceSize(faceMesh, imageProxy)if (faceSize < MIN_FACE_SIZE || faceSize > MAX_FACE_SIZE) {showHint("请调整与摄像头的距离")return false}return true
}
5. 项目总结
5.1 技术要点
- MLKit人脸检测API的使用
- CameraX相机框架的集成
- 人脸特征提取与匹配算法
- 性能优化与内存管理
- 用户体验优化
5.2 未来优化方向
- 支持多人脸检测
- 添加活体检测功能
- 优化特征提取算法
- 支持更多相机参数调节
- 添加云端同步功能
6. 参考资料
- MLKit官方文档
- CameraX官方文档
- MediaPipe官方文档