当前位置: 首页 > news >正文

【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)

🚀 力扣 45:跳跃游戏 II(全解法详解)

📌 题目描述

给你一个非负整数数组 nums,表示你最初位于数组的第一个位置。

数组中的每个元素表示你在该位置可以跳跃的最大长度。

你的目标是使用 最少的跳跃次数 到达数组的最后一个位置。

假设你总是可以到达数组的最后一个位置。

🎯 示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到位置 1(跳 1 步),然后跳 4(再跳 1 步)——共 2 步

🎯 示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

💡 解题思路总览

我们要找到 从起点跳到终点的最少步数。这题与「跳跃游戏 I」不同的地方是,这次我们不是判断“能否到达”,而是要求最小的“跳跃次数”。


✅ 解法一:贪心算法(最推荐🔥)

✨ 核心思路:

使用贪心思想,在每一步跳跃时,选择能跳的最远的那个位置。

🧠 实现步骤:

  1. 初始化步数 steps = 0,当前跳跃的边界 end = 0,和当前最远位置 farthest = 0
  2. 遍历数组:
    • 每次更新当前最远能跳到的位置
    • 当到达当前边界时,步数加一,并更新边界为 farthest

💻 代码实现(Go):

func jump(nums []int) int {
    steps := 0
    end := 0
    farthest := 0

    for i := 0; i < len(nums)-1; i++ {
        farthest = max(farthest, i+nums[i])
        if i == end {
            steps++
            end = farthest
        }
    }
    return steps
}

func max(a, b int) int {
    if a > b {
        return a
    }
    return b
}

⏱️ 时间复杂度:O(n)

🧠 空间复杂度:O(1)


🔄 解法二:动态规划(自底向上)

✨ 核心思路:

定义 dp[i] 表示从位置 i 跳到终点所需的最小步数。

🧠 实现步骤:

  1. 初始化 dp[n-1] = 0(终点到终点步数为0)
  2. 从右向左遍历数组
  3. 对于每个 i,从 i+1i+nums[i]dp[j] 中最小值

💻 代码实现(Go):

func jump(nums []int) int {
    n := len(nums)
    dp := make([]int, n)
    for i := n - 2; i >= 0; i-- {
        minStep := int(1e9)
        for j := i + 1; j <= i+nums[i] && j < n; j++ {
            if dp[j] < minStep {
                minStep = dp[j]
            }
        }
        dp[i] = minStep + 1
    }
    return dp[0]
}

⏱️ 时间复杂度:O(n²)

🧠 空间复杂度:O(n)

💬 优点:清晰易懂,适合入门
缺点:效率较低,不适合数据量大的情况


🔁 解法三:反向贪心(从终点往回跳)

✨ 核心思路:

从终点出发,每次选择最靠前、但能够跳到当前终点的位置,更新目标点,直到回到起点。

🧠 实现步骤:

  1. 初始位置设为 pos = n-1
  2. 遍历数组从头找哪个位置能跳到 pos
  3. 每次成功找到,就将 pos 更新为当前索引,同时步数加一

💻 代码实现(Go):

func jump(nums []int) int {
    pos := len(nums) - 1
    steps := 0
    for pos > 0 {
        for i := 0; i < pos; i++ {
            if i+nums[i] >= pos {
                pos = i
                steps++
                break
            }
        }
    }
    return steps
}

⏱️ 时间复杂度:O(n²)

🧠 空间复杂度:O(1)

💬 优点:逻辑反向,易于验证正确性
缺点:效率低,不适合大数据量


📊 三种方法对比总结

解法时间复杂度空间复杂度适合场景特点说明
✅ 贪心O(n)O(1)面试首选高效实用,核心技巧
动态规划O(n²)O(n)教学/入门思路清晰,但慢
反向贪心O(n²)O(1)验证/反向思考逆向推理,有趣但低效

📌 最佳实践建议

  • 面试中建议优先写贪心算法,能体现算法思维和代码能力;
  • 若初学 DP,可尝试动态规划方式,加深状态转移理解;
  • 想换个角度思考,可尝试反向贪心,拓展思维维度。

📚 拓展阅读

  • Leetcode 55. 跳跃游戏 I
  • Leetcode 134. 加油站(贪心)
  • Leetcode 122. 买卖股票的最佳时机 II(贪心)

💡 如果你觉得这篇文章对你有帮助,欢迎点赞 👍、收藏 ⭐、关注 📌,我将持续更新更多 LeetCode 热题的高质量解析~


相关文章:

  • Java技术生态前沿洞察:虚拟线程引领并发革命,框架创新赋能云原生时代
  • springcloud现常用的组件都有哪些,如何使用
  • go-zero使用elasticsearch踩坑记:时间存储和展示问题
  • map和set的使用
  • 24统计建模国奖论文写作框架2(机器学习+自然语言处理类)(附原文《高校负面舆情成因与演化路径研究》)
  • Vue 3 中 v-if 完全指南!!!
  • LeetCode 解题思路 32(Hot 100)
  • C语言查漏补缺:基础篇
  • 稳定的Android studio版本安装教程
  • Android获取后台应用的快照
  • Linux:页表详解(虚拟地址到物理地址转换过程)
  • qt主题方案使用
  • Vue 3 自定义权限指令 v-action
  • 【数据集】 PBMC(Peripheral Blood Mononuclear Cells)数据集
  • USC安防平台XBOX云台控制
  • 小程序的外观—WXSS
  • Python星球日记 - 第7天:字典与集合
  • 2025高频面试算法总结篇【排序】
  • 【蓝桥杯】算法笔记5
  • 【Metasploit】Metasploit安装及使用教程(非常详细)从零基础入门到精通,看完这一篇就够了。
  • 青岛建网站公司/网络营销推广的总结
  • dw怎么做秋季运动会网站/chrome手机安卓版
  • 建站最便宜的平台/深圳百度关键词排名
  • 公司自己的网站怎样做/无锡网站建设seo
  • 商城网站制作教程/小红书seo排名规则
  • 如何做高大上的网站 知乎/seo什么职位