go sync包(二) 互斥锁(二)
互斥锁 Mutex
mutex
的 加解锁很简单:
var mutex sync.Mutex
mutex.Lock()
defer mutex.Unlock()
// 加锁期间的代码逻辑
加锁
// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
// Slow path (outlined so that the fast path can be inlined)
m.lockSlow()
}
- 当我们调用 Lock 方法的时候,会先尝试走 Fast Path,也就是如果当前互斥锁如果处于未加锁的状态,尝试加锁,只要加锁成功就直接返回。
- 否则的话就进入 slow path。
func (m *Mutex) lockSlow() {
var waitStartTime int64 // 等待时间
starving := false // 是否处于饥饿状态
awoke := false // 是否处于唤醒状态
iter := 0 // 自旋迭代次数
old := m.state
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
// 判断当前 Goroutine 能否进入自旋
// 条件:
// 当前处于普通模式 && runtime_canSpin 返回 true
// runtime_canSpin 返回 true
// 1. 运行在多 CPU 的机器上
// 2. 自旋次数不超过 4 次
// 3. 当前机器上至少存在一个正在运行的处理器 P 并且处理的运行队列为空
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexWoken flag to inform Unlock
// to not wake other blocked goroutines.
// 尝试设置 mutexWoken 状态,避免唤醒其他休眠的 goroutine
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
// 自旋:执行 30 次 PAUSE指令,占用CPU并消耗CPU时间
runtime_doSpin()
iter++
old = m.state
continue
}
// 计算互斥锁的最新状态
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
if old&mutexStarving == 0 {
new |= mutexLocked
}
// 饥饿模式 || 锁已经被其他goroutine获取
// 加入等待队列
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
new &^= mutexWoken
}
// CAS更新状态获取锁
// 正常模式:这段代码会设置唤醒和饥饿标记、重置迭代次数并重新执行获取锁的循环。
// 饥饿模式: 当前 Goroutine 会获得互斥锁,如果等待队列中只存在当前 Goroutine,
// 互斥锁还会从饥饿模式中退出。
if atomic.CompareAndSwapInt32(&m.state, old, new) {
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// If we were already waiting before, queue at the front of the queue.
// 正在等,排在最前面
queueLifo := waitStartTime != 0
// 设置初始化时间,计算是否超过时间要切换到公平模式
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
// 阻塞
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// 看是否超过 1ms,是的话就切换到公平模式
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
old = m.state
// 饥饿模式
if old&mutexStarving != 0 {
// If this goroutine was woken and mutex is in starvation mode,
// ownership was handed off to us but mutex is in somewhat
// inconsistent state: mutexLocked is not set and we are still
// accounted as waiter. Fix that.
if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
throw("sync: inconsistent mutex state")
}
// 退出饥饿模式
delta := int32(mutexLocked - 1<<mutexWaiterShift)
if !starving || old>>mutexWaiterShift == 1 {
// Exit starvation mode.
// Critical to do it here and consider wait time.
// Starvation mode is so inefficient, that two goroutines
// can go lock-step infinitely once they switch mutex
// to starvation mode.
delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)
break
}
awoke = true
iter = 0
} else {
old = m.state
}
}
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
}
- 判断当前 goroutine 能否可以进入自旋状态,可以的话自旋争抢锁。
进入自旋状态的条件:- 普通模式
- 运行在多 CPU 的机器上
- 自旋次数不超过 4 次
- 当前机器上至少存在一个正在运行的处理器 P 并且处理的运行队列为空
- 普通模式:被唤醒的 goroutine 跟新到来的 goroutine 争抢锁。
饥饿模式:新到来的 goroutine 自动加入队列末尾,由队列第一个 goroutine 获得锁。 - 饥饿模式:
进入条件:如果当前 goroutine 超过 1ms 都没有获取到锁就会进饥饿模式。
退出条件:当前 goroutine 是队列中最后一个 goroutine。
解锁
// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
if race.Enabled {
_ = m.state
race.Release(unsafe.Pointer(m))
}
// Fast path: drop lock bit.
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
- 如果该函数返回的新状态等于 0,当前 Goroutine 就成功解锁了互斥锁。
- 如果该函数返回的新状态不等于 0,这段代码会调用
sync.Mutex.unlockSlow
开始慢速解锁。
func (m *Mutex) unlockSlow(new int32) {
// 校验锁状态的合法性
// 如果当前互斥锁已经被解锁过,直接抛出异常中止当前程序
if (new+mutexLocked)&mutexLocked == 0 {
fatal("sync: unlock of unlocked mutex")
}
// 普通模式
if new&mutexStarving == 0 {
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
//
// 没有等待者 || 已经被加锁 || 已经被解锁 || 公平锁
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// Grab the right to wake someone.
// 唤醒一个等待者
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
runtime_Semrelease(&m.sema, false, 1)
return
}
old = m.state
}
} else {
// Starving mode: handoff mutex ownership to the next waiter, and yield
// our time slice so that the next waiter can start to run immediately.
// Note: mutexLocked is not set, the waiter will set it after wakeup.
// But mutex is still considered locked if mutexStarving is set,
// so new coming goroutines won't acquire it.
// 饥饿模式
// 将当前锁让给下一个等待者
// 这里不会解除饥饿模式,所以新来的goroutine不会获得锁
runtime_Semrelease(&m.sema, true, 1)
}
}
// Semrelease atomically increments *s and notifies a waiting goroutine
// if one is blocked in Semacquire.
// It is intended as a simple wakeup primitive for use by the synchronization
// library and should not be used directly.
// If handoff is true, pass count directly to the first waiter.
// skipframes is the number of frames to omit during tracing, counting from
// runtime_Semrelease's caller.
// hadoff:
// true: 唤醒并直接移交给第一个等待者
// false: 只是唤醒操作
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)
小结
互斥锁的加锁过程比较复杂,它涉及自旋、信号量以及调度等概念:
- 如果互斥锁处于初始化状态,会通过置位 mutexLocked 加锁。
- 如果互斥锁处于 mutexLocked 状态并且在普通模式下工作,会进入自旋,执行 30 次 PAUSE 指令消耗 CPU 时间等待锁的释放。
- 如果当前 Goroutine 等待锁的时间超过了 1ms,互斥锁就会切换到饥饿模式。
- 互斥锁在正常情况下会通过 runtime.sync_runtime_SemacquireMutex 将尝试获取锁的 Goroutine 切换至休眠状态,等待锁的持有者唤醒(阻塞)。
- 如果当前 Goroutine 是互斥锁上的最后一个等待的协程,那么它会将互斥锁切换回正常模式。
互斥锁的解锁过程比较简单:
- 当互斥锁已经被解锁时,调用 sync.Mutex.Unlock 会直接抛出异常。
- 当互斥锁处于饥饿模式时,将锁的所有权交给队列中的下一个等待者,等待者会负责设置 mutexLocked 标志位。
- 当互斥锁处于普通模式时,如果没有 Goroutine 等待锁的释放或者已经有被唤醒的 Goroutine 获得了锁,会直接返回。在其他情况下会通过 sync.runtime_Semrelease 唤醒对应的 Goroutine。