当前位置: 首页 > wzjs >正文

沈阳做网站在哪seo查询排名系统

沈阳做网站在哪,seo查询排名系统,合优做网站需要多少钱,怎么申请信用卡收款网站接口本文我们通过搭建卷积神经网络模型,实现手写数字识别。 pytorch中提供了手写数字的数据集 ,我们可以直接从pytorch中下载 MNIST中包含70000张手写数字图像:60000张用于训练,10000张用于测试 图像是灰度的,28x28像素 …

本文我们通过搭建卷积神经网络模型,实现手写数字识别。

pytorch中提供了手写数字的数据集 ,我们可以直接从pytorch中下载

MNIST中包含70000张手写数字图像:60000张用于训练,10000张用于测试

图像是灰度的,28x28像素

首先,下载数据集

import torch
from torchvision import datasets #封装与图像相关的模型,数据集
from torchvision.transforms import ToTensor # #数据转换,张量,将其他类型的数据转换为tensor张量training_data=datasets.MNIST(root='data',#表示下载的手写数字到哪个路径train=True,#读取下载后数据中的训练集download=True,#如果之前已经下载过,就不用再下载transform=ToTensor(),#张量,图片不能直接传入神经网络模型
)test_data=datasets.MNIST(root='data',train=False,download=True,transform=ToTensor(),
)

打包数据

from torch.utils.data import DataLoader train_dataloader=DataLoader(training_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)

判断当前设备是否支持GPU

device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'using {device} device')

构建卷积神经网络模型

from torch import nn #导入神经网络模块class CNN(nn.Module):def __init__(self):#初始化类super(CNN,self).__init__()#初始化父类self.conv1=nn.Sequential(# 将多个层(如卷积、激活函数、池化等)按顺序打包,输入数据会​​依次通过这些层​​,无需手动编写每一层的传递逻辑。nn.Conv2d(#2D 卷积层,提取空间特征。in_channels=1,#输入通道数out_channels=16,#输出通道数kernel_size=3,#卷积核大小stride=1,#步长padding=1,#填充),nn.ReLU(),#激活函数,引入非线性变换,使得神经网络能够学习复杂的非线性变换,增强表达能力nn.MaxPool2d(kernel_size=2)# 2x2最大池化(尺寸减半))self.conv2=nn.Sequential(nn.Conv2d(16,32,3,1,1),nn.ReLU(),# nn.Conv2d(32,32,3,1,1),# nn.ReLU(),nn.MaxPool2d(2),)self.conv3=nn.Sequential(nn.Conv2d(32,64,3,1,1))self.out=nn.Linear(64*7*7,10)def forward(self,x):#前向传播x=self.conv1(x)x=self.conv2(x)x=self.conv3(x)x=x.view(x.size(0),-1)# 展平为向量(保留batch_size,合并其他维度)output=self.out(x)  # 全连接层输出return output

返回的output结果大致如图所示

 模型传入GPU

model=CNN().to(device)
print(model)

  损失函数,衡量的是​​模型预测的概率分布​​与​​真实的类别分布​​之间的差异。

loss_fn=nn.CrossEntropyLoss()

  优化器,用于在训练神经网络时更新模型参数,目的是​​在神经网络训练过程中,自动调整模型的参数(权重和偏置),以最小化损失函数​​。

optimizer=torch.optim.Adam(model.parameters(),lr=0.01)

 模型训练

def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num=1for X,y in dataloader:X,y=X.to(device),y.to(device)pred=model.forward(X)loss=loss_fn(pred,y)# Backpropagation 进来一个batch的数据,计算一次梯度,更新一次网络optimizer.zero_grad()               #梯度值清零loss.backward()                     #反向传播计算得到每个参数的梯度值optimizer.step()                    #根据梯度更新网络参数loss_value=loss.item()if batch_size_num%100==0:print(f'loss:{loss_value:>7f}[number:{batch_size_num}]')batch_size_num+=1epochs=10for i in range(epochs):print(f'第{i}次训练')train(train_dataloader, model, loss_fn, optimizer)

模型测试

def test(dataloader,model,loss_fn):size = len(dataloader.dataset)# 测试集总样本数num_batches = len(dataloader)# 测试集总批次数model.eval()#进入到模型的测试状态,所有的卷积核权重被设为只读模式test_loss, correct = 0, 0# 初始化累计损失和正确预测数#禁用梯度计算with torch.no_grad():#一个上下文管理器,关闭梯度计算。当你确认不会调用Tensor.backward()的时候。这可以减少计算所用内存消耗。for X,y in dataloader:X,y=X.to(device),y.to(device)pred=model.forward(X)test_loss+=loss_fn(pred,y).item()correct+=(pred.argmax(1)==y).type(torch.float).sum().item()a=(pred.argmax(1)==y)b=(pred.argmax(1)==y).type(torch.float)test_loss/=num_batchescorrect/=sizeprint(f'Test result: \n Accuracy:{(100*correct)}%,Avg loss:{test_loss}')test(test_dataloader,model,loss_fn)

得到结果如图所示

http://www.dtcms.com/wzjs/83669.html

相关文章:

  • 免费wap自助建站系统网站快速被百度收录
  • 手机网站仿站十大it教育培训机构排名
  • 网站副标题wordpress百度网络营销app
  • 商务网站创建流程是什么网络营销的五大特点
  • 武汉大学人民医院研究生西安百度首页优化
  • 网站怎样做网银支付网络广告人社区
  • 前端兼职平台的行业前景互联网优化
  • 利用小说网站做本站优化陕西优化疫情防控措施
  • 网站程序上传工具360优化大师历史版本
  • 本地wordpress搭建seo百科大全
  • 群晖wordpress 证书厦门网站优化
  • wordpress文章点赞插件上海正规seo公司
  • 网站中下滑菜单怎么做seo领导屋
  • 丽水做网站公司google推广一年3万的效果
  • 巩义企业网站建设代做关键词收录排名
  • 高效网站推广公司如何在百度免费发布广告
  • 帝国网站地图模板活动营销方案
  • 微商怎么推广自己的产品关键词优化公司哪家好
  • 宁夏网站建设怎么样百度官方入口
  • 毕业论文怎么写大专seo基础知识培训视频
  • 网站专题页怎么做今日重大军事新闻
  • 那些网站做推广怎么免费注册域名
  • 成都建站seo湖北疫情最新情况
  • 江门网站制作网站网站seo推广方案
  • 做网站的材料四平网络推广
  • 网站建设需求问卷电工培训内容
  • 如何给网站做快速排名今日新闻国家大事
  • 做网站下一页昆明seo关键词
  • java做网站的主要技术微信朋友圈广告推广代理
  • 云南网站制作一条龙微博营销案例