当前位置: 首页 > wzjs >正文

湖南建设监理报名网站泰安网站建设优化

湖南建设监理报名网站,泰安网站建设优化,wordpress写文件到磁盘失败,南京装修公司十大排名榜在 Python 开发过程中,日志(Logging)是不可或缺的调试和监控工具。合理的日志管理不仅能帮助开发者快速定位问题,还能提供丰富的数据支持,让应用更具可观测性。本文将带你全面了解 Python logging 模块,涵盖…

在这里插入图片描述
在 Python 开发过程中,日志(Logging)是不可或缺的调试和监控工具。合理的日志管理不仅能帮助开发者快速定位问题,还能提供丰富的数据支持,让应用更具可观测性。本文将带你全面了解 Python logging 模块,涵盖日志输出到控制台、文件、Elasticsearch(ES),以及日志格式的介绍。

一、日志输出到控制台

最简单的日志管理方式就是将日志信息输出到控制台(标准输出)。这种方式在调试时非常方便,能够实时查看程序运行状态。默认情况下,Python logging 模块会以 WARNING 级别及以上的日志输出到控制台。

  def add_stream_handle(self):if LOG_TO_CONSOLE and LOG_ENABLED:handler = logging.StreamHandler(sys.stdout)handler.setLevel(level=CONSOLE_LEVEL)handler.setFormatter(logging.Formatter(LOG_FORMAT))self.logger.addHandler(handler)

二、日志输出到文件

在实际开发中,日志不仅仅是为了调试,更重要的是长期存储以便后续分析。因此,我们通常需要将日志写入文件,以便在程序运行后仍能追踪问题。通过 FileHandler,我们可以轻松地将日志写入指定的文件,并支持日志轮转(如按日期或文件大小分割)。

    def add_file_handle(self):if LOG_ENABLED and LOG_TO_FILE:logs_dir = os.path.join(LOG_DIR, "logs")os.makedirs(logs_dir, exist_ok=True)file = os.path.join(logs_dir, f'{datetime.now().strftime("%Y%m%d_%H%M%S")}.log')handler = logging.FileHandler(file, encoding="utf-8")handler.setLevel(level=FILE_LEVEL)handler.setFormatter(logging.Formatter(LOG_FORMAT))self.logger.addHandler(handler)

三、日志输出到 Elasticsearch(ES)

对于需要集中式日志管理的场景,可以将日志直接存储到 Elasticsearch 中,配合 Kibana 进行可视化分析。通过 logging 模块的自定义 Handler 或者 elastic-apm 等第三方库,我们可以将 Python 产生的日志数据直接推送到 ES,并结合全文检索和仪表盘进行日志分析。

class JsonSerializer:"""JSON serializer relying on the standard library json module."""mimetype: ClassVar[str] = "application/json"def default(self, data: Any) -> Any:if isinstance(data, date):return data.isoformat()elif isinstance(data, uuid.UUID):return str(data)elif isinstance(data, Decimal):return float(data)raise Exception(f"Unable to serialize to JSON: {data!r} (type: {type(data).__name__})", )def json_dumps(self, data: dict) -> str:return json.dumps(data, default=self.default, ensure_ascii=False, separators=(",", ":"))def json_loads(self, data: str) -> dict:return json.loads(data)def loads(self, data: str) -> dict:return self.json_loads(data)def dumps(self, data: dict) -> str:# The body is already encoded to bytes# so we forward the request body along.if isinstance(data, str):return datareturn self.json_dumps(data)def _attempt_serialize_numpy(data: Any) -> Tuple[bool, Any]:try:import numpy as npif isinstance(data,(np.int_,np.intc,np.int8,np.int16,np.int32,np.int64,np.uint8,np.uint16,np.uint32,np.uint64,),):return True, int(data)elif isinstance(data,(np.float16,np.float32,np.float64,),):return True, float(data)elif isinstance(data, np.bool_):return True, bool(data)elif isinstance(data, np.datetime64):return True, data.item().isoformat()elif isinstance(data, np.ndarray):return True, data.tolist()except ImportError:# Since we failed to import 'numpy' we don't want to try again.return False, Nonereturn False, Nonedef _attempt_serialize_pandas(data: Any) -> Tuple[bool, Any]:try:import pandas as pdif isinstance(data, (pd.Series, pd.Categorical)):return True, data.tolist()elif isinstance(data, pd.Timestamp) and data is not getattr(pd, "NaT", None):return True, data.isoformat()elif data is getattr(pd, "NA", None):return True, Noneexcept ImportError:# Since we failed to import 'pandas' we don't want to try again.return False, Nonereturn False, Nonedef _attempt_serialize_numpy_or_pandas(data: Any) -> Tuple[bool, Any]:serialized, value = _attempt_serialize_numpy(data)if serialized:return serialized, valueserialized, value = _attempt_serialize_pandas(data)if serialized:return serialized, valuereturn False, NoneTIME_TYPES = (date, datetime)
FLOAT_TYPES = (Decimal,)
INTEGER_TYPES = ()class EsJsonSerializer(JsonSerializer):mimetype: ClassVar[str] = "application/json"def default(self, data: Any) -> Any:if isinstance(data, TIME_TYPES):# Little hack to avoid importing pandas but to not# return 'NaT' string for pd.NaT as that's not a valid# Elasticsearch date.formatted_data = data.isoformat()if formatted_data != "NaT":return formatted_dataif isinstance(data, uuid.UUID):return str(data)elif isinstance(data, FLOAT_TYPES):return float(data)# This is kept for backwards compatibility even# if 'INTEGER_TYPES' isn't used by default anymore.elif INTEGER_TYPES and isinstance(data, INTEGER_TYPES):return int(data)# Special cases for numpy and pandas types# These are expensive to import so we try them last.serialized, value = _attempt_serialize_numpy_or_pandas(data)if serialized:return valueraise TypeError(f"Unable to serialize {data!r} (type: {type(data)})")class EsHandler(logging.Handler):def __init__(self, url, index, batch_size=100, flush_interval=6, extra_fields=None):super().__init__()self.default_raise = Falseself.index = indexself.batch_size = batch_sizeself.flush_interval = flush_intervalself.extra_fields = extra_fields if isinstance(extra_fields, dict) else {}self._buffer = []self.url = urlself._timer = Noneself.serializer = EsJsonSerializer()@staticmethoddef __get_es_datetime_str(timestamp):current_date = datetime.utcfromtimestamp(timestamp)return "{0!s}.{1:03d}Z".format(current_date.strftime('%Y-%m-%dT%H:%M:%S'), int(current_date.microsecond / 1000))def emit(self, record: logging.LogRecord) -> None:self.format(record)rec = self.extra_fields.copy()for key, value in record.__dict__.items():rec[key] = "" if value is None else valuerec["timestamp"] = self.__get_es_datetime_str(record.created)self._buffer.append(rec)# 如果缓存已满,直接刷新if len(self._buffer) >= self.batch_size:self.flush()else:self.schedule_flush()def schedule_flush(self):if self._timer is None:self._timer = Timer(self.flush_interval, self.flush)self._timer.daemon = Trueself._timer.start()def flush(self):# 如果缓存中有日志,则批量写入if self._timer is not None and self._timer.is_alive():self._timer.cancel()self._timer = Noneif self._buffer:try:logs_buffer = self._bufferself._buffer = []self.bulk_data(logs_buffer)except Exception as exception:if self.default_raise:raise exceptiondef bulk_data(self, logs_buffer):print("批量写入 Elasticsearch")request_body = ""for log_record in logs_buffer:actions = {"index": {'_index': self.index, "_id": str(uuid4())}}data = json.dumps(actions)request_body += datarequest_body += "\n"request_body += EsJsonSerializer().json_dumps(log_record)request_body += "\n"request_body += "\n"headers = {'content-type': 'application/json'}requests.post(self.url, data=request_body, headers=headers)def close(self):if self._timer is not None:self.flush()self._timer = None

四、日志格式介绍

字段作用
%(levelname)s日志级别(如 DEBUG、INFO、WARNING、ERROR、CRITICAL),用于标识日志的严重程度。
%(asctime)s日志的时间戳,默认格式为 YYYY-MM-DD HH:MM:SS,mmm(可自定义 datefmt)。
%(process)d进程 ID,表示当前日志属于哪个进程(适用于多进程应用)。
%(filename)s记录日志的 Python 文件名(不包含路径)。
%(name)s记录日志的 Logger 名称,通常是 logging.getLogger(name) 设定的名称。
%(lineno)d代码中的行号,表示日志记录发生的确切位置。
%(module)s模块名称,即 filename 去掉 .py 的部分。
%(message)s实际的日志信息,即 logger.info(“内容”) 传入的内容。
%(levelno)s日志级别的数值(如 DEBUG=10, INFO=20, WARNING=30, ERROR=40, CRITICAL=50)
%(pathname)s记录日志的 Python 文件完整路径。
%(funcName)s记录日志所在的函数名。
%(thread)d线程 ID(适用于多线程应用)。
%(threadName)s线程名称。
%(processName)s记录日志时距 logging 模块加载后的毫秒数。
%(msecs)d记录日志的时间戳的毫秒部分。
# 示例
LOG_FORMAT = '%(levelname)s - %(asctime)s - [PID: %(process)d] [Thread: %(threadName)s] - %(pathname)s - %(funcName)s - Line: %(lineno)d - %(message)s'

五、完整的代码

import logging
import sys
import os
import json
import socket
import time
import uuid
from datetime import date, datetime
from decimal import Decimal
from typing import Any, ClassVar, Mapping, Optional, Tuplefrom threading import Timer
from multiprocessing import Lock
import requests
from uuid import uuid4LOG_ENABLED = True  # 是否开启日志
LOG_TO_CONSOLE = True  # 是否输出到控制台
CONSOLE_LEVEL = "INFO"  # 控制台的日志等级
LOG_TO_FILE = True  # 是否输出到文件
FILE_LEVEL = "INFO"  # 文件的日志等级
LOG_TO_ES = True  # 是否输出到 Elasticsearch
ES_LEVEL = "INFO"  # 输出到ES的日志等级LOG_LEVEL = 'DEBUG'  # 日志级别LOG_FORMAT = '%(levelname)s - %(asctime)s - process: %(process)d - %(filename)s - %(name)s - %(lineno)d - %(module)s - %(message)s'  # 每条日志输出格式ELASTIC_SEARCH_HOST = 'http://192.168.3.200:9200'  # Elasticsearch Host
ELASTIC_SEARCH_INDEX = 'python'  # Elasticsearch Index Name
APP_NAME = "demo-fastapi"
APP_ENVIRONMENT = 'dev'  # 运行环境,如测试环境还是生产环境
LOG_DIR = os.getcwd()class JsonSerializer:"""JSON serializer relying on the standard library json module."""mimetype: ClassVar[str] = "application/json"def default(self, data: Any) -> Any:if isinstance(data, date):return data.isoformat()elif isinstance(data, uuid.UUID):return str(data)elif isinstance(data, Decimal):return float(data)raise Exception(f"Unable to serialize to JSON: {data!r} (type: {type(data).__name__})", )def json_dumps(self, data: dict) -> str:return json.dumps(data, default=self.default, ensure_ascii=False, separators=(",", ":"))def json_loads(self, data: str) -> dict:return json.loads(data)def loads(self, data: str) -> dict:return self.json_loads(data)def dumps(self, data: dict) -> str:# The body is already encoded to bytes# so we forward the request body along.if isinstance(data, str):return datareturn self.json_dumps(data)def _attempt_serialize_numpy(data: Any) -> Tuple[bool, Any]:try:import numpy as npif isinstance(data,(np.int_,np.intc,np.int8,np.int16,np.int32,np.int64,np.uint8,np.uint16,np.uint32,np.uint64,),):return True, int(data)elif isinstance(data,(np.float16,np.float32,np.float64,),):return True, float(data)elif isinstance(data, np.bool_):return True, bool(data)elif isinstance(data, np.datetime64):return True, data.item().isoformat()elif isinstance(data, np.ndarray):return True, data.tolist()except ImportError:# Since we failed to import 'numpy' we don't want to try again.return False, Nonereturn False, Nonedef _attempt_serialize_pandas(data: Any) -> Tuple[bool, Any]:try:import pandas as pdif isinstance(data, (pd.Series, pd.Categorical)):return True, data.tolist()elif isinstance(data, pd.Timestamp) and data is not getattr(pd, "NaT", None):return True, data.isoformat()elif data is getattr(pd, "NA", None):return True, Noneexcept ImportError:# Since we failed to import 'pandas' we don't want to try again.return False, Nonereturn False, Nonedef _attempt_serialize_numpy_or_pandas(data: Any) -> Tuple[bool, Any]:serialized, value = _attempt_serialize_numpy(data)if serialized:return serialized, valueserialized, value = _attempt_serialize_pandas(data)if serialized:return serialized, valuereturn False, NoneTIME_TYPES = (date, datetime)
FLOAT_TYPES = (Decimal,)
INTEGER_TYPES = ()class EsJsonSerializer(JsonSerializer):mimetype: ClassVar[str] = "application/json"def default(self, data: Any) -> Any:if isinstance(data, TIME_TYPES):# Little hack to avoid importing pandas but to not# return 'NaT' string for pd.NaT as that's not a valid# Elasticsearch date.formatted_data = data.isoformat()if formatted_data != "NaT":return formatted_dataif isinstance(data, uuid.UUID):return str(data)elif isinstance(data, FLOAT_TYPES):return float(data)# This is kept for backwards compatibility even# if 'INTEGER_TYPES' isn't used by default anymore.elif INTEGER_TYPES and isinstance(data, INTEGER_TYPES):return int(data)# Special cases for numpy and pandas types# These are expensive to import so we try them last.serialized, value = _attempt_serialize_numpy_or_pandas(data)if serialized:return valueraise TypeError(f"Unable to serialize {data!r} (type: {type(data)})")class EsHandler(logging.Handler):def __init__(self, url, index, batch_size=100, flush_interval=6, extra_fields=None):super().__init__()self.default_raise = Falseself.index = indexself.batch_size = batch_sizeself.flush_interval = flush_intervalself.extra_fields = extra_fields if isinstance(extra_fields, dict) else {}self._buffer = []self.url = urlself._timer = Noneself.serializer = EsJsonSerializer()@staticmethoddef __get_es_datetime_str(timestamp):current_date = datetime.utcfromtimestamp(timestamp)return "{0!s}.{1:03d}Z".format(current_date.strftime('%Y-%m-%dT%H:%M:%S'), int(current_date.microsecond / 1000))def emit(self, record: logging.LogRecord) -> None:self.format(record)rec = self.extra_fields.copy()for key, value in record.__dict__.items():rec[key] = "" if value is None else valuerec["timestamp"] = self.__get_es_datetime_str(record.created)self._buffer.append(rec)# 如果缓存已满,直接刷新if len(self._buffer) >= self.batch_size:self.flush()else:self.schedule_flush()def schedule_flush(self):if self._timer is None:self._timer = Timer(self.flush_interval, self.flush)self._timer.daemon = Trueself._timer.start()def flush(self):# 如果缓存中有日志,则批量写入if self._timer is not None and self._timer.is_alive():self._timer.cancel()self._timer = Noneif self._buffer:try:logs_buffer = self._bufferself._buffer = []self.bulk_data(logs_buffer)except Exception as exception:if self.default_raise:raise exceptiondef bulk_data(self, logs_buffer):print("批量写入 Elasticsearch")request_body = ""for log_record in logs_buffer:actions = {"index": {'_index': self.index, "_id": str(uuid4())}}data = json.dumps(actions)request_body += datarequest_body += "\n"request_body += EsJsonSerializer().json_dumps(log_record)request_body += "\n"request_body += "\n"headers = {'content-type': 'application/json'}requests.post(self.url, data=request_body, headers=headers)def close(self):if self._timer is not None:self.flush()self._timer = Noneclass Logger:_instance = None_lock = Lock()def __init__(self, ):self.logger = logging.getLogger("__file__")self.logger.setLevel(LOG_LEVEL)self.add_stream_handle()self.add_file_handle()self.add_es_handle()def add_stream_handle(self):if LOG_TO_CONSOLE and LOG_ENABLED:handler = logging.StreamHandler(sys.stdout)handler.setLevel(level=CONSOLE_LEVEL)handler.setFormatter(logging.Formatter(LOG_FORMAT))self.logger.addHandler(handler)def add_file_handle(self):if LOG_ENABLED and LOG_TO_FILE:logs_dir = os.path.join(LOG_DIR, "logs")os.makedirs(logs_dir, exist_ok=True)file = os.path.join(logs_dir, f'{datetime.now().strftime("%Y%m%d_%H%M%S")}.log')handler = logging.FileHandler(file, encoding="utf-8")handler.setLevel(level=FILE_LEVEL)handler.setFormatter(logging.Formatter(LOG_FORMAT))self.logger.addHandler(handler)def add_es_handle(self):if LOG_ENABLED and LOG_TO_ES:# 添加 CMRESHandlerurl = f"{ELASTIC_SEARCH_HOST}/_bulk"extra_fields = {"app_name": APP_NAME, "app_env": APP_ENVIRONMENT, 'host': socket.gethostname(),'host_ip': socket.gethostbyname(socket.gethostname())}es_handler = EsHandler(url, index=ELASTIC_SEARCH_INDEX, extra_fields=extra_fields)es_handler.setLevel(level=LOG_LEVEL)formatter = logging.Formatter(LOG_FORMAT)es_handler.setFormatter(formatter)self.logger.addHandler(es_handler)@classmethoddef get_logger(cls):cls._lock.acquire()if cls._instance is None:cls._instance = Logger().loggercls._lock.release()return cls._instanceif __name__ == '__main__':logger = Logger.get_logger()logger.info("INFO")logger.warning("WARNING")logger.error("ERROR")time.sleep(100)

结语

掌握 Python 的 logging 模块,能让你的日志管理更加高效,无论是简单的控制台调试,还是日志文件持久化存储,甚至是对接 ELK 进行集中管理,都是开发者必备的技能。

http://www.dtcms.com/wzjs/82013.html

相关文章:

  • 网站建设功能模块爱站网长尾关键词挖掘查询工具
  • 企业网站建设营销百度com打开
  • 济南做网站得多少钱邯郸seo优化公司
  • 罗湖网站建设联系电话郑州seo优化
  • 长沙网站制作合作商备案域名出售平台
  • 长春网站建设费用最好的seo外包
  • 系统官网网站模板下载安装业务推广公司
  • 富顺网站建设seo运营专员
  • 空白网站怎么做山西网络营销seo
  • 多语种网站建设企业策划咨询公司
  • 比特币做空网站台州网站建设方案推广
  • seo公司是干嘛的seo教程视频
  • 商城类网站设计制作发布软文的平台
  • 百度网页版官方优化的意思
  • 中英双语网站程序网站关键词优化多少钱
  • 哪个网站可以做身份核验国际新闻界官网
  • 淘宝网时时彩做网站是真的吗湖北短视频seo营销
  • 这个网站做海外推广app拉新推广平台渠道商
  • 手机电脑网站设计站长统计官方网站
  • 做公司网站思路软件开发工具
  • 西安做网站公司哪家好河南郑州最新事件
  • wordpress mobile themes百度seo排名优化联系方式
  • wordpress服务器出错seo技术公司
  • 怎么做卖卷网站小红书seo是什么
  • 哈密做网站做网页多少钱一个页面
  • 简述网站的制作流程站内营销推广方式
  • 个人网站推广渠道 微博 贴吧优化合作平台
  • 网站做联盟广告能赚钱吗吉林seo排名公司
  • 苏州新区做网站关键词搜索站长工具
  • 在香港做网站需要什么培训网登录入口