当前位置: 首页 > wzjs >正文

网站优化的公司做网站基本东西

网站优化的公司,做网站基本东西,公司网站制作费用多少,群晖 wordpress 慢文章目录 方案分析具体代码实现关键步骤说明注意事项 为了实现类似于MATLAB的edge(I, "sobel")函数的C代码,我们需要复现其完整的边缘检测流程,包括梯度计算、非极大值抑制和阈值处理。以下是具体的方案及代码实现: 方案分析 图像…

文章目录

      • 方案分析
      • 具体代码实现
      • 关键步骤说明
      • 注意事项

为了实现类似于MATLAB的edge(I, "sobel")函数的C++代码,我们需要复现其完整的边缘检测流程,包括梯度计算、非极大值抑制和阈值处理。以下是具体的方案及代码实现:

方案分析

  1. 图像预处理:将图像转为灰度图并进行高斯模糊以降低噪声。
  2. 梯度计算:使用Sobel算子计算水平和垂直方向的梯度。
  3. 梯度幅值与方向:计算梯度幅值并确定每个像素的梯度方向。
  4. 非极大值抑制:细化边缘,仅保留梯度方向上的局部最大值。
  5. 自动阈值处理:根据梯度幅值的统计特性自动选择阈值,生成二值边缘图像。

具体代码实现

#include <opencv2/opencv.hpp>
#include <cmath>using namespace cv;Mat sobelEdgeDetection(const Mat& input) {// 转换为灰度图Mat gray;if (input.channels() == 3)cvtColor(input, gray, COLOR_BGR2GRAY);elsegray = input.clone();// 高斯模糊降噪Mat blurred;GaussianBlur(gray, blurred, Size(3, 3), 0);// 计算Sobel梯度Mat dx, dy;Sobel(blurred, dx, CV_32F, 1, 0, 3); // 水平方向Sobel(blurred, dy, CV_32F, 0, 1, 3); // 垂直方向// 计算梯度幅值和角度(度数表示)Mat magnitude, angle;cartToPolar(dx, dy, magnitude, angle, true);// 非极大值抑制Mat nms = Mat::zeros(magnitude.size(), CV_32F);for (int i = 1; i < magnitude.rows - 1; ++i) {for (int j = 1; j < magnitude.cols - 1; ++j) {float curr = magnitude.at<float>(i, j);float dir = fmod(angle.at<float>(i, j) + 180, 180); // 转换为0~180度// 确定离散方向int sector;if ((dir < 22.5) || (dir >= 157.5))sector = 0; // 水平else if (dir >= 22.5 && dir < 67.5)sector = 1; // 45度else if (dir >= 67.5 && dir < 112.5)sector = 2; // 垂直elsesector = 3; // 135度// 比较相邻像素float a, b;switch (sector) {case 0:a = magnitude.at<float>(i, j + 1);b = magnitude.at<float>(i, j - 1);break;case 1:a = magnitude.at<float>(i - 1, j + 1);b = magnitude.at<float>(i + 1, j - 1);break;case 2:a = magnitude.at<float>(i + 1, j);b = magnitude.at<float>(i - 1, j);break;default: // 135度a = magnitude.at<float>(i - 1, j - 1);b = magnitude.at<float>(i + 1, j + 1);break;}if (curr >= a && curr >= b)nms.at<float>(i, j) = curr;}}// 自动计算阈值(取最大值的25%)double maxVal;minMaxLoc(nms, nullptr, &maxVal);double threshold = 0.25 * maxVal;// 应用阈值并转换为二值图像Mat edges;threshold(nms, edges, threshold, 255, THRESH_BINARY);edges.convertTo(edges, CV_8U);return edges;
}int main() {Mat img = imread("input.jpg");if (img.empty()) {std::cerr << "Error: Could not load image." << std::endl;return -1;}Mat edges = sobelEdgeDetection(img);imshow("Sobel Edges", edges);waitKey(0);return 0;
}

关键步骤说明

  1. 高斯模糊:使用3x3高斯核减少噪声影响。
  2. Sobel梯度计算:分别计算水平和垂直方向的梯度,数据类型为CV_32F以保留符号。
  3. 梯度幅值与方向:通过cartToPolar计算幅值(强度)和方向(角度)。
  4. 非极大值抑制:将梯度方向离散化为四个主方向,仅保留梯度方向上幅值最大的像素,细化边缘。
  5. 自动阈值处理:取非极大值抑制后幅值的最大值的25%作为阈值,生成二值边缘图像。

注意事项

  • 参数调整:高斯核大小、阈值比例等参数可根据实际图像调整。
  • 性能优化:处理大图像时,可考虑并行化或优化循环结构。
  • 结果对比:建议与MATLAB结果对比,调整参数以达到最佳匹配。

此代码实现了类似MATLAB的Sobel边缘检测流程,结合非极大值抑制和自动阈值处理,能够有效提取图像边缘。

http://www.dtcms.com/wzjs/810204.html

相关文章:

  • 聚民网网站建设桂林尚品网络做的网站好不好
  • 事业单位网站设计营销型门户网站建设方案
  • 重庆建站公司费用公司网站如何做水印
  • 门户网站是网站建站行业
  • dedecms 把自己的网站添加进去微信里面的小程序怎么设置
  • 北京 网站定制开发自己怎么开发游戏软件
  • 汕头网站建设平台wordpress添加贴吧表情
  • 网站建设 动态添加内容学科主题资源网站的建设
  • 台州做网站联系方式wordpress wp.net
  • wordpress 整容模板搜索引擎优化的主要策略
  • 平顶山市做网站深圳网站建设公司 评论
  • 哪个网站的品牌特卖做的好九江网站建设优化
  • php与mysql网站开发...公司网站建设属于什么职位
  • wordpress主题安装教程信息流优化师职业规划
  • 上海自主建站模板网站如何设置广告
  • 温州阀门外贸网站建设哈尔滨的建设信息网站
  • 菏泽培训网站建设西安seo优化推广
  • 湖北城市建设职业技术学院官方网站做高端网站的公司
  • 网站静态页面下载工具建设网站找哪个公司
  • 自己做的网站怎么弄成app深圳网站建设首选
  • 电商网站改版思路vpswindows俄罗斯
  • 泰通建设集团网站网页链接提取工具
  • 长春哪里做网站长沙网络营销网站建设
  • 做个网站一年要多少钱视频拍摄培训
  • 国外炫网站app与小程序的区别
  • 带后台网站建设网页设计与制作教材电子版
  • 咸宁网站设计公司网站首页图片代码
  • 美食网站模版自己怎么做新闻开头视频网站
  • 做软测的网站江门网站建设开发
  • 银行网站建设方案视频广州装修公司排名