当前位置: 首页 > wzjs >正文

做农资的网站百度收录申请

做农资的网站,百度收录申请,网站开发创建画布,做哪个网站比较有流量目录 前言示例手动微分实现两个未知数, 求偏导tf.GradientTape常量求导tf.GradientTape二阶导数tf.GradientTape实现梯度下降结合optimizer实现梯度下降 前言 在TensorFlow中,微分是个非常重要的概念。它们分别用于自动求导(计算梯度)和高效…

目录

  • 前言
  • 示例
    • 手动微分实现
    • 两个未知数, 求偏导
    • tf.GradientTape常量求导
    • tf.GradientTape二阶导数
    • tf.GradientTape实现梯度下降
    • 结合optimizer实现梯度下降

前言

在TensorFlow中,微分是个非常重要的概念。它们分别用于自动求导(计算梯度)和高效地处理数据。下面我将分别介绍这两个主题。

微分(Automatic Differentiation)
TensorFlow提供了强大的自动求导功能,这对于训练机器学习模型尤其重要,因为需要通过反向传播算法来更新模型参数。自动求导允许 TensorFlow 自动计算损失函数相对于模型参数的梯度,从而简化了模型训练过程中的优化步骤。

使用 tf.GradientTape
tf.GradientTape是TensorFlow 2.x 中实现自动求导的核心工具。它会记录在其上下文内的所有操作,并可以在需要时计算这些操作相对于输入张量的梯度。

示例

手动微分实现

from tensorflow import keras
import numpy as np
import pandas
import matplotlib.pyplot as plt# 3 * x^2 + 2 * x - 1
# 手动微分
def f(x):return 3. * x ** 2 + 2. * x - 1.# 近似求导
def approximate_derivative(f, x, eps=1e-3):return (f(x + eps) - f(x - eps)) / (2. * eps)print(approximate_derivative(f, 1.))

结果如下:

7.999999999999119

两个未知数, 求偏导

from tensorflow import keras
import numpy as np
import pandas
import matplotlib.pyplot as plt# 两个未知数, 求偏导
def g(x1, x2):return (x1 + 5) * (x2 ** 2)# 近似求导
def approximate_derivative(f, x, eps=1e-3):return (f(x + eps) - f(x - eps)) / (2. * eps)# 分别求g对x1,和x2的偏导.
def approximate_gradient(g, x1, x2, eps=1e-3):dg_x1 = approximate_derivative(lambda x: g(x, x2), x1, eps)dg_x2 = approximate_derivative(lambda x: g(x1, x), x2, eps)return dg_x1, dg_x2print(approximate_gradient(g, 2, 3))

结果如下:

(8.999999999993236, 41.999999999994486)

tf.GradientTape常量求导

from tensorflow import keras
import numpy as np
import pandas
import matplotlib.pyplot as plt
import tensorflow as tf x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)def g(x1, x2):return (x1 + 5) * (x2 ** 2)with tf.GradientTape() as tape:z = g(x1, x2)dz_x1x2 = tape.gradient(z, [x1, x2])
print(dz_x1x2)

结果如下:

[<tf.Tensor: shape=(), dtype=float32, numpy=9.0>, <tf.Tensor: shape=(), dtype=float32, numpy=42.0>]

tf.GradientTape二阶导数

from tensorflow import keras
import numpy as np
import pandas
import matplotlib.pyplot as plt
import tensorflow as tf x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)def g(x1, x2):return (x1 + 5) * (x2 ** 2)# 二阶导数
# 嵌套tf.GradientTape
x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)with tf.GradientTape(persistent=True) as outer_tape:with tf.GradientTape(persistent=True) as inner_tape:z = g(x1, x2)# 一阶导    inner_grads = inner_tape.gradient(z, [x1, x2])
# 对一阶导的结果再求导
outer_grads = [outer_tape.gradient(inner_grad, [x1, x2]) for inner_grad in inner_grads]
print(outer_grads)
del inner_tape
del outer_tape

结果如下:

[[None, <tf.Tensor: shape=(), dtype=float32, numpy=6.0>], [<tf.Tensor: shape=(), dtype=float32, numpy=6.0>, <tf.Tensor: shape=(), dtype=float32, numpy=14.0>]]

tf.GradientTape实现梯度下降

from tensorflow import keras
import numpy as np
import pandas
import matplotlib.pyplot as plt
import tensorflow as tf def f(x):return 3. * x ** 2 + 2. * x - 1.# 使用tf.GradientTape实现梯度下降
learing_rate = 0.1
x = tf.Variable(0.0)for _ in range(100):with tf.GradientTape() as tape:z = f(x)dz_dx = tape.gradient(z, x)x.assign_sub(learing_rate * dz_dx) # x -= learning_rate * dz_dx
print(x)

结果如下:

<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-0.3333333>

结合optimizer实现梯度下降

from tensorflow import keras
import numpy as np
import pandas
import matplotlib.pyplot as plt
import tensorflow as tf def f(x):return 3. * x ** 2 + 2. * x - 1.from tensorflow import keras# 结合optimizer去实现梯度下降
learing_rate = 0.1
x = tf.Variable(0.0)
optimizer = keras.optimizers.SGD(lr=learing_rate)for _ in range(100):with tf.GradientTape() as tape:z = f(x)dz_dx = tape.gradient(z, x)
#     x.assign_sub(learing_rate * dz_dx) # x -= learning_rate * dz_dxoptimizer.apply_gradients([(dz_dx, x)])
print(x)

结果如下

<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=-0.3333333>
http://www.dtcms.com/wzjs/801841.html

相关文章:

  • 做设计用到的网站wordpress跳转内容页
  • wordpress如何设置邮箱seo需要掌握什么技能
  • 老干部局网站建设北京网站设计合理刻
  • 网站建设好处zu97仿 花瓣 wordpress
  • 如何用图片文字做网站正规网站建设服务
  • 网站投放广告怎么做学wordpress难不难
  • 网站彩票怎么做微信小程序商城制作一个需要多少钱
  • 湖北网站建设模板下载网站建设实例教程
  • 海珠网站建设制作wordpress 友情链接页
  • dede新手做网站多久电子商务网站策划书模板
  • wordpress 无法播放音乐长春seo建站
  • 网站的数据库怎么建立怎样制作公司的网页
  • 删除百度收录的网站大气网站首页
  • 网站在线推广关键词排名监控批量查询
  • 免费asp网站源码wordpress网站优化
  • 十大邮箱app排行榜网站建设需要做的优化工作
  • 做网站需要懂哪些技能百度推广找谁做
  • 做图标得英文网站番禺商城网站建设
  • 一般可以在哪些网站做推广海报设计手绘
  • 免费seo网站优化今天31个省新增最新消息
  • 中小型企业网站模板免费自助建站系统哪个好
  • wordpress建站教程视频wordpress返回顶部插件
  • 专业简历制作网站有哪些网店运营推广职业技能等级证书
  • tool站长工具wordpress 打开慢方法
  • 2017做网站怎么赚钱动漫设计一般用什么软件
  • 微网站 app 区别专业的网站制作
  • 用.net做视频网站的案例word贴到wordpress
  • 北京壹零零壹网站建设如何建设网站兴田德润实惠
  • 做网站需要切图吗网站开发属于什么软件
  • 网站推荐赣州人才网下载